• Title/Summary/Keyword: Drug safety assessment

Search Result 245, Processing Time 0.026 seconds

New in vitro multiple cardiac ion channel screening system for preclinical Torsades de Pointes risk prediction under the Comprehensive in vitro Proarrhythmia Assay concepta

  • Jin Ryeol An;Seo-Yeong Mun;In Kyo Jung;Kwan Soo Kim;Chan Hyeok Kwon;Sun Ok Choi;Won Sun Park
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.3
    • /
    • pp.267-275
    • /
    • 2023
  • Cardiotoxicity, particularly drug-induced Torsades de Pointes (TdP), is a concern in drug safety assessment. The recent establishment of human induced pluripotent stem cell-derived cardiomyocytes (human iPSC-CMs) has become an attractive human-based platform for predicting cardiotoxicity. Moreover, electrophysiological assessment of multiple cardiac ion channel blocks is emerging as an important parameter to recapitulate proarrhythmic cardiotoxicity. Therefore, we aimed to establish a novel in vitro multiple cardiac ion channel screening-based method using human iPSC-CMs to predict the drug-induced arrhythmogenic risk. To explain the cellular mechanisms underlying the cardiotoxicity of three representative TdP high- (sotalol), intermediate- (chlorpromazine), and low-risk (mexiletine) drugs, and their effects on the cardiac action potential (AP) waveform and voltage-gated ion channels were explored using human iPSC-CMs. In a proof-of-principle experiment, we investigated the effects of cardioactive channel inhibitors on the electrophysiological profile of human iPSC-CMs before evaluating the cardiotoxicity of these drugs. In human iPSC-CMs, sotalol prolonged the AP duration and reduced the total amplitude (TA) via selective inhibition of IKr and INa currents, which are associated with an increased risk of ventricular tachycardia TdP. In contrast, chlorpromazine did not affect the TA; however, it slightly increased AP duration via balanced inhibition of IKr and ICa currents. Moreover, mexiletine did not affect the TA, yet slightly reduced the AP duration via dominant inhibition of ICa currents, which are associated with a decreased risk of ventricular tachycardia TdP. Based on these results, we suggest that human iPSC-CMs can be extended to other preclinical protocols and can supplement drug safety assessments.

Regulatory Aspect of Risk Assessment and Management

  • Lee, Hyomin;EunkyungYoon;Jeeyeun Han
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.17-24
    • /
    • 2001
  • Risk assessment is useful tool making good decisions on the risks of certain hazardous com-pound and suggests safe margin through scientific process using toxicological data, statistical tool, exposure value and relevant variants. The goal of risk management is to protect the public health from hazardous compound based on result of risk assessment having reality. For the suggestion of exact man-aging information, risk assessment must be designed to represent a "plausible estimate" of the exposure to the individuals and to minimize uncertainty. Risk assessment methodology and knowledge are expected to change more rapidly than before and up-to-date methodology should be applied in regulatory aspects through the Agency. For the useful application of risk assessment, the communication between the risk assessor and the risk manager is needed before the initiation of the risk assessment and upon its completion. Generally, the risk assessment itself as a practical tool in the regulatory decision making process would be regarded with social economic impact.ic impact.

  • PDF

Determination of Ceftiofur Residues by Simple Solid Phase Extraction Coupled with Liquid Chromatography-Tandem Mass Spectrometry in Eel, Flatfish, and Shrimp

  • Kim, Joohye;Shin, Dasom;Kang, Hui-Seung;Lee, Eunhye;Choi, Soo Yeon;Lee, Hee-Seok;Cho, Byung-Hoon;Lee, Kang-Bong;Jeong, Jiyoon
    • Mass Spectrometry Letters
    • /
    • v.10 no.2
    • /
    • pp.43-49
    • /
    • 2019
  • The aim of this study was conducted to develop an analytical method to determine the concentration of ceftiofur residue in eel, flatfish, and shrimp. For derivatization and extraction, the sample was hydrolyzed with dithioerythritol to produce desfuroylceftiofur, which was then derivatized by iodoacetamide to obtain desfuroylceftiofur acetamide. For purification, the process of solid phase extraction (Oasis HLB) was used. The target analytes were confirmed and quantified in $C_{18}$ column using liquid chromatography-tandem mass spectrometry with 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B) as the mobile phase. The linearity of the standard calibration curve was confirmed by a correlation coefficient, $r^2>0.99$. The limit of quantification for ceftiofur was 0.002 mg/kg; the accuracy (expressed as the average recoveries) was 80.6-105%; the precision (expressed as the coefficient of variation) was below 6.3% at 0.015, 0.03, and 0.06 mg/kg. The validated method demonstrated high accuracy and acceptable sensitivity to meet the Codex guideline requirements. The developed method was tested using market samples. As a results, ceftiofur was detected in one sample. Therefore, it can be applied to the analysis of ceftiofur residues in fishery products.

Drug Development and Guideline for Safety Pharmacology Studies (신약개발과 안전성약리시험 가이드라인)

  • 최기환;박인숙;임화경;오우용;왕소영;김소희;김주일;김동섭
    • YAKHAK HOEJI
    • /
    • v.47 no.2
    • /
    • pp.104-109
    • /
    • 2003
  • The present paper reviews the notion and comparison of the Korea Food and Drug Administration(KFDA) general pharmacology and the International Conference on Harmonisation (ICH) safety pharmacology. General pharmacology or safety pharmacology is termed the study to determine the potential of a compound to induce adverse pharmacological effects. KFDA general pharmacology studies have been considered an important component in drug safety assessment and these were originally referred to those designed to examine effects other than the primary therapeutics effect of a drug candidate. The KFDA notified the Guideline for General Pharmacology in 1997. Safety pharmacology studies were focused on identifying adverse effects on physiological functions. In the ICH came into place S7A Safety Pharmacology Studies for Human Pharmaceuticals in 2001. A new chemical entity should be assessed for its side effects, initially in those physiological systems which are generally agreed to be the key systems that are essential for life; these "core system" include the central nervous system, cardiovascular system and respiratory system in safety pharmacology studies. These studies should be performed in compliance with Good Laboratory Practice (GLP).

Pre-clinical QT Risk Assessment in Pharmaceutical Companies - Issues of Current QT Risk Assessment -

  • Takasuna, Kiyoshi; Katsuyoshi, Chiba;Manabe, Sunao
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Since the Committee for Proprietary Medicinal Products (CPMP) of the European Union issued in 1997 a "points to consider" document for the assessment of the potential for QT interval prolongation by non-cardiovascular agents to predict drug-induced torsades de pointes (TdP), the QT liability has become the critical safety issue in the development of pharmaceuticals. As TdP is usually linked to delayed cardiac repolarization, international guideline (ICH S7B) has advocated the standard repolarization assays such as in vitro IKr (hERG current) and in vivo QT interval, or in vitro APD (as a follow up) as the best biomarkers for predicting the TdP risk. However, the recent increasing evidence suggests that the currently used above biomarkers and/or assays are not fully predictive for TdP, but also does not address potential new druginduced TdP due to the selective disruption of hERG protein trafficking to the cell membrane or VT and/or VF with QT shortening. There is, therefore, an urgent need for other surrogate markers or assays that can predict the proarrhythmic potential of drug candidate. In this review, we provide an ideal pre-clinical strategy to predict the potentials of QT liability and lethal arrhythmia of the drug candidates with recent issues in this field in mind, not at the expense of discarding therapeutically innovative drugs.