• 제목/요약/키워드: Drug response

Search Result 902, Processing Time 0.034 seconds

Iron Oxide Nanoparticle-incorporated Alginate Capsules as Magnetic Field-assisted Potential Delivery Platforms for Agriculture Pesticides and Biocontrol Agents

  • Lee, Dohyeon;Choi, Kyoung Soon;Kim, Daun;Park, Sunho;Kim, Woochan;Jang, Kyoung-Je;Lim, Ki-Taek;Chung, Jong Hoon;Seonwoo, Hoon;Kim, Jangho
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.323-329
    • /
    • 2017
  • Purpose: Biocompatible capsules have recently been highlighted as a novel platform for delivering various components, such as drug, food, and agriculture pesticides, to overcome the current limitations of living systems, such as those in agriculture, biology, the environment, and foods. However, few active targeting systems using biocompatible capsules and physical forces simultaneously have been developed in the agricultural engineering field. Methods: Here, we developed an active targeting delivery platform that uses biocompatible alginate capsules and controls movements by magnetic forces for agricultural and biological engineering applications. We designed and fabricated large-scale biocompatible capsules, using custom-made nozzles ejecting alginate solutions for encapsulation. Results: To develop the active target delivery platforms, we incorporated iron oxide nanoparticles in the large-scale alginate capsules. The sizes of alginate capsules were controlled by regulating the working conditions, such as concentrations of alginate solutions and iron oxide nanoparticles. Conclusions: We confirmed that the iron oxide particle-incorporated large-scale alginate capsules moved actively in response to magnetic fields, which will be a good strategy for active targeted delivery platforms for agriculture and biological engineering applications, such as for the controlled delivery of agriculture pesticides and biocontrol agents.

Antitumor Activity of Combination Therapy with Metformin and Trametinib in Non-Small Cell Lung Cancer Cells

  • Ko, Eunjeong;Baek, Seungjae;Kim, Jiwon;Park, Deokbae;Lee, Youngki
    • Development and Reproduction
    • /
    • v.24 no.2
    • /
    • pp.113-123
    • /
    • 2020
  • Metformin has been widely used as an antidiabetic drug, and reported to inhibit cell proliferation in many cancers including non-small cell lung cancer (NSCLC). In NSCLC cells, metformin suppresses PI3K/AKT/mTOR signaling pathway, but effect of metformin on RAS/RAF/MEK/ERK signaling pathway is controversial; several studies showed the inhibition of ERK activity, while others demonstrated the activation of ERK in response to metformin exposure. Metformin-induced activation of ERK is therapeutically important, since metformin could enhance cell proliferation through RAS/RAF/MEK/ERK pathway and lead to impairment of its anticancer activity suppressing PI3K/AKT/mTOR pathway, requiring blockade of both signaling pathways for more efficient antitumor effect. The present study tested the combination therapy of metformin and trametinib by monitoring the alterations of regulatory effector proteins of cell signaling pathways and the effect of the combination on cell viability in NCI-H2087 NSCLC cells with NRAS and BRAF mutations. We show that metformin alone blocks PI3K/AKT/mTOR signaling pathway but induces the activation and phosphorylation of ERK. The combination therapy synergistically decreased cell viability in treatment with low doses of two drugs, while it gave antagonistic effect with high doses. These findings suggest that the efficacy of metformin and trametinib combination therapy may depend on the alteration of ERK activity induced by metformin and specific cellular context of cancer cells.

Antidepressant effects of aqueous extract of saffron and its effects on CREB, P-CREB, BDNF, and VGF proteins in rat cerebellum

  • Asrari, Najmeh;Yazdian-Robati, Rezvan;Abnous, Khalil;Razavi, BiBi Marjan;Rashednia, Mrazieh;Hasani, Faezeh Vahdati;Hosseinzadeh, Hossein
    • Journal of Pharmacopuncture
    • /
    • v.21 no.1
    • /
    • pp.35-40
    • /
    • 2018
  • Objective: The role of BDNF (brain-derived neurotrophic factor), CREB (cAMP response element binding) and VGF neuropeptide has been proved in antidepressant activity of long term saffron administration in the rat hippocampus. In this study we evaluated the role of these proteins in antidepressant activity of saffron in long term administration in the rat cerebellum. Methods: Saffron aqueous extract (40 and 80 mg/kg/day) and imipramine (10 mg/kg/day) were administered intraperitoneally for 21 days to rats. At the end of experiment, animals were sacrificed and cerebellums were separated. The protein levels of BDNF, VGF, CREB and P- CREB in the rat cerebellum were evaluated using western blot analysis. Results: Saffron aqueous extract (80mg/kg/day) caused significant increase in protein level of P-CREB in long term treatment in the rat cerebellum. The increases in the protein levels of VGF, CREB and BDNF were not significant. Conclusion: In summary, our results showed that antidepressant effect of saffron in rat cerebellum might be due to the enhanced phosphorylation of CREB.

Haloperidol Induces Calcium Ion Influx Via L-Type Calcium Channels in Hippocampal HN33 Cells and Renders the Neurons More Susceptible to Oxidative Stress

  • Kim, Hyeon Soo;Yumkham, Sanatombi;Choi, Jang Hyun;Kim, Eung-Kyun;Kim, Yong Sik;Ryu, Sung Ho;Suh, Pann-Ghill
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.51-57
    • /
    • 2006
  • Haloperidol is a classical neuroleptic drug that is still in clinical use and can lead to abnormal motor activity following repeated administration. However, there is little knowledge of how it triggers neuronal impairment. In this study, we report that it induced calcium ion influx via L-type calcium channels and that the elevation of calcium ions induced by haloperidol appeared to render hippocampal cells more susceptible to oxidative stress. Indeed, the level of cytotoxic reactive oxygen species (ROS) and the expression of pro-apoptotic Bax increased in response to oxidative stress in haloperidol-treated cells, and these effects were inhibited by verapamil, a specific L-type calcium channel blocker, but not by the T-type calcium channel blocker, mibefradil. These findings indicate that haloperidol induces calcium ion influx via L-type calcium channels and that this calcium influx influences neuronal fate.

Study for Possibility of N,N,N-Trimethylphytosphingosine (TMP) for Management of Chronic Skin Diseases (N,N,N-Trimethylphytosphingosine (TMP)의 염증성 피부질환 치료제 가능성에 관한 연구)

  • Seo, Won-Sang;Oh, Han-Na;Park, Woo-Jung;Um, Sang-Young;Kang, Sang-Mo
    • KSBB Journal
    • /
    • v.29 no.1
    • /
    • pp.36-41
    • /
    • 2014
  • Skin disease is one of the most common diseases and its incidence is increasing dramatically in modern society. Specially, many attempts have been made to treat chronic skin inflammation diseases, such as psoriasis and atopic dermatitis, but effective therapies for the immune cell-mediated skin diseases, including psoriasis and atopic dermatitis have not been developed. Until recently, several drug candidates which were claimed to be effective for skin diseases have been reported, but most of them are not used to treat chronic skin disease. Especially, Psoriasis is characterized by excessive growth and aberrant differentiation of keratinocytes, but is fully reversible with appropriate therapy. The trigger of the keratinocyte response is thought to be activation of the cellular immune system, with T cells and various immune-related cytokines. Formation of new blood vessels starts with early psoriatic changes and disappears with disease clearance. Several angiogenic mediators are up-regulated in psoriasis development. Contact- and mediator-dependent factors derived from keratinocytes, mast cells and immune cells may contribute to the strong blood vessel formation of psoriasis. New technologies and experimental models provide new insights into the role of angiogenesis in psoriasis pathogenesis. TMP and its derivatives themselves effectively inhibited in vitro cell migration, tube formation, and the expression of angiogenic factors. However, TMP and its derivatives induced side effects including hemolysis and local side effects. Therefore, in an attempt to reduce the toxicity and the undesirable side effects of TMP and derivatives, a liposomal formulation was prepared and tested for its effectiveness. TMP and derivatives liposomes retained the effectiveness of TMP in vitro while side effects were reduced. These results support the conclusion that TMP effectively inhibits in vitro angiogenesis, with the possibility that use as a psoriasis relief agent.

Investigation of Genetic Evidence for Sasang Constitution Types in South Korea

  • Lee, Mi-Kyeong;Jang, Eun-Su;Sohn, Ho-Young;Park, Jeong-Yeon;Koh, Byung-Hee;Sung, Joo-Hon;Kim, Jong-Il;Kim, Jong-Yeol;Seo, Jeong-Sun
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.107-110
    • /
    • 2009
  • In Sasang constitutional medicine, both disease susceptibility and drug response are considered to be related to the characteristics of an individual's physiology and psychology: a theory which is central to traditional Korean medicine. Based on such observable characteristics, Sasang constitutional medicine classifies people into four constitutional types. Genetic studies of Sasang constitution would help reveal the inheritance patterns and models of the typological traits and, moreover, help with traditional medical diagnosis and treatment. To investigate the heritable aspect of Sasang constitution, we collected various pedigrees from South Korea. The study population has 101 pedigrees composed of 593 individuals. The determination of the Sasang constitution type of each individual was performed by doctors who diagnose the Sasang constitutional type of individuals as part of their professional practice. We calculated estimates of familial correlation and heritability. Parent-Offspring pairs showed the strongest familial correlation of Sasang constitutional type, with the correlation values of 0.21 and 0.28, followed by sibling pairs with the value ranging between 0.14 and 0.25. From the heritability analysis conducted with the Variance-Component method, the heritability of TE (Tae-Eum) type, SY (So-Yang) type, and SE (So-Eum) type were 55%, 41%, and 47%, respectively. This pattern of heritability was consistent with different set of analyses, which suggest the robustness of our result. Our result clearly shows that the Sasang constitution type is heritable, and further genetic analysis based on our result will shed light on the biological mechanism of Sasang constitution.

The Anti-inflammatory Effect of Nypa fruticans Wurmb. Fruit on Lipopolysaccharide-induced Inflammatory response on RAW 264.7 cells (LPS로 유도한 염증반응에서 해죽순의 항염증 효과)

  • Bae, Gi-Sang;Park, Sung-Joo
    • The Korea Journal of Herbology
    • /
    • v.31 no.5
    • /
    • pp.79-84
    • /
    • 2016
  • Objective : Nypa fruticans Wurmb. Fruit (NF) has been used as a conventional medicine to treat inflammatory peridontal diseases in Myanmar and Eastern Asia. However, the anti-inflammatory effect of NF aqueous extract on lipopolysaccharide (LPS)-induced inflammatory responses was not well-investigated. Therefore, this study was aimed to investigate the anti-inflammatory effect of NF on LPS-induced inflammatory responses on RAW 264.7 cells.Methods : To induce inflammation on the macrophage cell line, RAW 264.7 cells were treated with 500 ng/mL of LPS. Water extracts of NF was treated 1 h prior to treatment of LPS. Cell viability was measured by MTT assay. Production of nitrite was measured with Griess assay and pro-inflammatory cytokines such as interleukine (IL)-1β and IL-6, and tumor necrosis factor (TNF)-α was measured by enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (PCR). In addition, we examined the inhibitory mechanisms of NF by western blot and immunocytochemistry.Result : Water Extract from NF itself did not have any cytotoxic effect at the concentration of 200 ㎍/ml in RAW 264.7 cells. Treatment of NF inhibited the production of nitrite, and pro-inflammatory cytokines inlcuding IL-1β, IL-6 and TNF-α in a dose dependant. In addition, NF treatment inhibited the LPS-induced activation and translocation of nuclear factor (NF)-κB.Conclusion : In summary, our result suggest that treatment of NF could reduce the LPS-induced inflammatory responses via deactivation of NF-κB. This study could suggest that NF could be a beneficial drug or agent to prevent inflammation.

Anti-Inflammatory Effect of Aqueous Extract of Scolopendrae Corpus in RAW 264.7 Cells (마우스 대식세포주인 RAW 264.7 세포에서 오공(蜈蚣)의 항염증 효과)

  • Jo, Il-Joo;Choi, Mee-Ok;Park, Min-Cheol;Song, Ho-Joon;Park, Sung-Joo
    • The Korea Journal of Herbology
    • /
    • v.26 no.3
    • /
    • pp.23-29
    • /
    • 2011
  • Objective : The purpose of this study was to investigate the anti-inflammatory effects of aqueous extract from Scolopendrae Corpus (SC) on lipopolysaccharide (LPS)-induced inflammatory response. Methods : To evaluate the anti-inflammatory effects of SC, we examined the inflammatory mediators such as nitric oxide (NO) and pro-inflammatory cytokines (TNF-a, inteleukin (IL)-$1{\beta}$ and IL-6) on RAW 264.7 cells. We also examined molecular mechanisms such as mitogen-activated protein kinases (MAPKs) and inhibitory kappa B a ($I{\kappa}$-Ba) using western blot. Furthermore, we also investigated the effect of SC on LPS-induced endotoxin shock. Results : Extract from SC itself had not any cytotoxic effect in RAW 264.7 cells. Aqueous extract from SC inhibited LPS-induced NO production and iNOS expression. SC pre-treatment also inhibited IL-$1{\beta}$, IL-6 production in RAW 264.7 cells. To investigate inhibitory effects of SC on inflammatory mediators, activation of MAPKs was examined. SC inhibited the phosphorylation of p38 kinases (p38), c-Jun $NH_2$-terminal kinase (JNK) and also the degradation of $I{\kappa}$-$B{\alpha}$ in RAW 264.7 cells stimulated with LPS. Furthermore, SC administration reduced LPS-induced endotoxin shock. Conclusion : SC down-regulated LPS-induced production of inflammatory mediators through inhibition of activation of p38, JNK and degradation of $I{\kappa}$-$B{\alpha}$. Taken together, our results suggest that SC may be a beneficial drug against inflammatory diseases such as sepsis.

Function identification of bovine Nramp1 promoter and intron 1

  • Hao, Linlin;Zhang, Libo;Li, Mingtang;Nan, Wang;Liu, Songcai;Zhong, Jifeng
    • Animal cells and systems
    • /
    • v.15 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • The Nramp1/Slc11a1 locus encodes a proton-coupled divalent cation transporter, expressed in late endosomes/lysosomes of macrophages, that constitutes a component of the innate immune response to combat intracellular pathogens and it was shown to play an important role in regulating inherent immunity. The previously identified Z-DNA forming polymorphic repeat(GT)n in the promoter region of the human Nramp1 gene does act as a functional polymorphism influencing gene expression. Research has shown that INF-${\gamma}$, TNF-${\alpha}$, IL-$1{\beta}$ and bacteria LPS increase the level of Nramp1 expression. However, the molecular mechanism for Nramp1 gene regulation is unclear. In this research, bovine Nramp1 5'-flanking region (-1748~+769) was cloned and analyzed by bioinformatics. Then to find the core promoter and the cis-acting elements, deletion analysis of promoter was performed using a set of luciferase reporter gene constructs containing successive deletions of the bovine Nramp1 5'-flanking regions. Promoter activity analysis by the dual luciferase reporter assay system showed that the core promoter of Nramp1 was located at +58~-89 bp. Some positive regulatory elements are located at -89~-205 bp and -278~-1495 bp. And the repressor elements were in region -205~-278 bp, intron1 and -1495~-1748 bp. LPS-responsive regions were located at -1495~-1748 bp and -278~-205 bp. The present study provides an initial effort to explore the molecular mechanism of transcriptional activation of the bovine Nramp1 gene and should facilitate further studies to decode the complex regulatory process and for molecular breeding for disease resistance in bovines.

Ricinus communis extract inhibits the adipocyte differentiation through activating the Wnt/β-catenin signaling pathway

  • Kim, Bora;Kim, Hyun-Soo
    • Food Science and Preservation
    • /
    • v.24 no.4
    • /
    • pp.524-528
    • /
    • 2017
  • Ricinus communis, belongs to the family Euphorbiaceae, has been known as medicinal plants for treatment of inflammation, tumors, antidiabetic, hepatoprotective and laxative. Compared to many pharmacological studies, the effect of R. communis extract on regulating adipogenesis as therapeutic drug for treating obesity has not been reported. R. communis extract (RCE) was investigated to determine its effects on the adipogenesis by monitoring the status of $Wnt/{\beta}-catenin$ signaling and factors involving the differentiation of adipocytes. The differentiation of 3T3-L1 cells monitored by Oil Red O staining was inhibited in concentration dependent manner by RCE. The luciferase activity of HEK 293-TOP cells containing pTOPFlash with Tcf4 response element-luciferase gene was increased approximately 2-folds by the treatment of RCE at concentrations of $100{\mu}g/mL$ compared to the control. Activation of the $Wnt/{\beta}-catenin$ pathway by RCE was further confirmed by immunocytochemical analysis which shows an increment of nuclear localization of ${\beta}-catenin$. In addition, safety of RCE was verified through performing neural stem cell morphology assay. Among the identified flavonoids in RCE, isoquercitrin was the most abundant. Therefore, these results indicate that the adipocyte differentiation was significantly reduced by isoquercitrin in R. communis. In this study, RCE suppresses the adipogenesis of 3T3-L1 cells via the activation of $Wnt/{\beta}-catenin$ signaling.