• Title/Summary/Keyword: Drug formulation

Search Result 336, Processing Time 0.025 seconds

Development of Modified Phenylalanine Ammonia-lyase for the Treatment of Phenylketonuria

  • Kim, Woo-Mi
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.104-110
    • /
    • 2009
  • Phenylketonuria (PKU) is an inherited metabolic disorder caused by mutations in the phenylalanine catabolic enzyme, phenylalanine hydroxylase (PAH). The use of phenylalanine ammonia-lase (PAL) by oral and parenteral routes as a therapeutic drug for PKU has been severely limited due to inactivation by intestinal proteolysis and immune reactions. PEGylation was applied to PAL to reduce the degrees of antigenicity and proteolytic inactivation. Kinetic experiments with native PAL and pegylated PALs were performed, and pH stability, temperature stability, and protease susceptibility were evaluated. Enzyme linked immunosorbent assay (ELISA) was carried out to measure the immune complex between pegylated PALs and antiserum that had been extracted from a PAL-immunized mouse. Pegylated PAL, especially branched pegylated PAL (10 kDa, 1:32), was more active for phenylalanine and more stable in pancreatic proteases than native PAL. Native PAL was optimal at pH 8.5, corresponding to the average pH range of the small intestine; the same finding was noted for pegylated PALs. All linear and branched pegylated PALs had low reactivity with mouse antiserum, especially the 1:16 formulation with linear 5-kDa PEG and the 1:32 formulation with branched 10-kDa PEG. Therefore, we suggest the 1:32 formulation with branched 10-kDa PEG as the most promising formulation for enzyme replacement therapy.

Preparation and Evaluation of Aceclofenac Microemulsion for Transdermal Delivery System

  • Yang, Jae-Heon;Kim, Young-Il;Kim, Kyung-Mi
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.534-540
    • /
    • 2002
  • To develop novel transdermal formulation for aceclofenac, microemulsion was prepared for increasing its skin permeability. Based on solubiity and phase studies, oil and surfactant was selected and composition was determined. Microemulsion was spontaneously prepared by mixing ingredients and the physicochemical properties such was investigated. The mean diameters of microemulsion were approximately 90 nm and the system was physically stable at room temperature at least for 3 months. In addition, the in vitro and in vivo performance of microemulsion formulation was evaluated. Aceclofenac was released from microemulsion in acidic aqueous medium, and dissolved amounts of aceclofenac was approximately 30% after 240 min. Skin permeation of aceclofenac from microemulsion formulation was higher than that of cream. Following transdermal application of aceclofenac preparation to delayed onset muscle soreness, serum creatine phosphokinase and lactate dehydrogenase activity was significantly reduced by aceclofenac. Aceclofenac in microemulsion was more potent than cream in the alleviation of muscle pain. Therefore, the microemulsion formulation of aceclofenac appear to be a reasonable transdermal delivery system of the drug with enhanced skin permeability and efficacy for the treatment of muscle damage.

Parenteral Formulations Based on Albumin Particulate Technology

  • Lee, Hong-Hwa;Lee, Min-Jung;Heo, Sun-Ju;Sah, Hong-Kee
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.83-95
    • /
    • 2010
  • Over the years, nanoparticle drug delivery systems have demonstrated versatile potentials in biological, medical and pharmaceutical applications. In the pharmaceutical industry nanotechnology research has mainly focused on providing controlled drug release, targeting their delivery to specific organs, and developing parenteral formulations for poorly water soluble drugs to improve their bioavailability. Achievement in polymer industry has generated numerous polymers applicable to designing nanoparticles. From viewpoints of product development, a nanocarrier material should meet requirements for biodegradability, biocompatibility, availability, and regulatory approval crieteria. Albumin is indeed a material that fulfills such requirements. Also, the commercialization of a first albumin-bound paclitaxel nanoparticle product (Abraxane$^{TM}$) has sparked renewed interests in the application of albumin in the development of nanoparticle formulations. This paper reviews the intrinsic properties of albumin, its suitability as a nanocarrier material, and albumin-based parenteral formulation approaches. Particularly discussed in detail are albumin-based particulate injectables such as Abraxane$^{TM}$. Information on key roles of albumin in the nab$^{TM}$ technology and representative manufacturing processes of albumin particulate products are provided. It is likely that albumin-based particulate technology would extend its applications in delivering drugs, polypeptides, proteins, vaccines, nucleic acids, and genes.

Iontophoretic Delivery of Vitamine C-2-phosphate from Carbopol Hydrogel (하이드로겔을 이용한 비타민 C-인산염의 이온토포레시스 피부투과)

  • Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.3
    • /
    • pp.159-166
    • /
    • 2007
  • In order to develop an optimum formulation for iontophoretic delivery of vitamine C-2-phosphate (VCP) from Carbopol hydrogel, we have investigated various factors which can affect the iontophoretic flux through skin. Such factors as drug concentration, current density, current profile, current duration, ionic strength, pH and percutaneous enhancers (ethanol, glycerine, propylene glycerol, sorbitol, urea) were studied. Compared to the flux by passive or anodal delivery, the flux by cathodal delivery increased markedly, and thus, only cathodal delivery was used in the rest of the flux experiments. Flux increased linearly as the drug concentration and current density increased. As the duration of current application increased from 30 min to 120 min, flux increased linearly, however the AUC was not directly proportional to the applied amount of current. Flux also increased as the pH increased, possibly due to the increase in ionization of phosphate group. As the ionic strength increased, flux decreased. No significant increase in flux was observed after enhancer application, indicating that the effect of current on flux is dominating over the effect of percutaneous enhancers (P>0.05). These results provide important informations that are needed for optimal formulation of iontophortic delivery for VCP.

Formulation and Evaluation of Moisture-activated Acyclovir Patches (수분 감응성 아시클로버 패취제의 설계 및 평가)

  • Kim, Ah-Mee;Gwak, Hye-Sun;Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.6
    • /
    • pp.393-399
    • /
    • 2006
  • This study was aimed to design, formulate and characterize the moisture-activated patches containing acyclovir for antiviral action. Gel intermediates for film-type patches were prepared with mucoadhesive polymer, viscosity builders, enhancers and acyclovir. Patches containing acyclovir were characterized by in vitro measurement of drug release rates through a cellulose barrier membrane, and of drug flux through the hairless mouse skin. Film-type patches obtained were uniform in the thickness and showed a mucoadhesive property when contacted with moisture. The formulation was optimized, which consisted of $Cantrez^{\circledR}$ AN-169(2%), $Kollidon^{\circledR}$ VA 64(1%), $Natrosol^{\circledR}$(1%), hydroxypropyl-$\beta$-cyclodextrin(1%) and dimethylsulfoxide(0.5%). Release rates of acyclovir patches increased dose-dependently. The addition of terpenes such as d-limonene or cineole increased release rates of acyclovir, but decreased permeation rates. The permeation rates were enhanced by 2 and 2.5 times by the addition of glycyrrhizic acid ammonium salt and sodium glycocholate, respectively, compared with that of no enhancer. These results suggest that it may be feasible to deliver acyclovir through the skin or gingival mucosa from the moisture-activated patches.

Formulation and Pharmaceutical Properties of Transdermal Patch of Flurbiprofen (플루비프로펜 함유 경피 패취제의 제제설계 및 약제학적 성질)

  • 이계주;고유현;우종수;황성주
    • YAKHAK HOEJI
    • /
    • v.43 no.4
    • /
    • pp.447-457
    • /
    • 1999
  • The purpose of this study is to prepare the adhesive type patch containing flurbiprofen, and to demonstrate the feasibility of flurbiprofen administration through the intact skin using adhesive type patch preparation. For this purpose, two pressure sensitive adhesives, Polyisobutylene(PIB) and $Gelva^{\circledR}737$, were selected from the chemical grade of polymers, and the adhesive type patches of flurbiprofen were prepared. The release rate of flurbiprofen from the PIB-based adhesive patch was higher than that from $Gelva^{\circledR}737$ based adhesive patch. The release rate of flurbiprofen from the PIB-based A-type patch with 1.0mm, 1.5mm or 2.0mm thicknesses followed the first order kinetics. In the skin permeation study, using male hairless mouse skin, a monophasic skin permeation profile was observed with 1% flurbiprofen loading dose. The inclusion of palmitic acid or SLS(0.25~0.5%) as an enhancer produced a remarkable enhancement in the skin permeation rate of flurbiprofen, and the percentile ratio of drug and enhancer appeared to be important for the effective enhancement. In the in vivo percutaneous absorption study, the plasma concentration of the optimal formulation was significantly (p<0.01) higher than that of the conventional cataplasma ($Bifen^{\circledR}$). These studies demonstrate a good feasibility of flurbiprofen administration through the intact skin using a transdermal patch, and show a possibility of the development of flurbiprofen patches.

  • PDF

A study on easy-to-use drug formulation for emergency medical technicians (응급구조사들이 사용하는 약물의 제형 개발에 관한 연구)

  • Kim, Hoon;Kim, Chul-Tae
    • The Korean Journal of Emergency Medical Services
    • /
    • v.24 no.2
    • /
    • pp.89-97
    • /
    • 2020
  • Purpose: In this study we aimed to manufacture and evaluate an oral disintegrating film containing ibuprofen. Methods: Optimal oral ventilation was manufactured using ibuprofen 3g, polyvinyl alcohol #500 4.2g, HPMC K 100M 1.6g, glycerol 4g, TWEEN #20 0.3g, PEG #20 0.3g, citric acid 0.5g, sucralose 0.1g, ethamol 10mL, and distilled water 30mL. Results: Film mass ranged from 110 to 130mg in all prescriptions, showing general uniformity while the water content ranged from 6 to 12%. Measurement of ibuprofen content in all manufactured film solutions averaged 100.12% (98.0-102.0%). The elution test predicted the time taken from the body and the film agent of all prescriptions was released 100% within 5 minutes to confirm the rapid elution. Conclusion: Based on the results of all test, prescription E was proved to be the most suitable.

Effects of aqueous extracts from Lonicera japonica and Tussilago farfara on RAW 264.7 Macrophages

  • Lee, Eung-Seok;Yang, Su-Young;Park, Yang-Chun;Oh, Young-Seon;Lee, Jin-Woo;Lee, Yong-Koo
    • Journal of Haehwa Medicine
    • /
    • v.19 no.1
    • /
    • pp.49-54
    • /
    • 2010
  • Inhalational drug is an attractive modality for local therapy of pulmonary diseases as well as systemic drug delivery. Flower of Lonicera japonica (FLJ) and flower of Tussilag farfara (FTF) are medicinal herbs for respiratory disease in traditional Korean medicine. As a preliminary study for effective inhalable formulation of FLJ and FTF, this study was to provide the toxicity and anti-inflammatory effect on murine macrophages. The dried FLJ and FTF were extracted with distilled water, filtered and freeze-dried. After treatment with FLJ and FTF extract on RAW 264.7 cells, the cell viabilities were measured by MTT assay. FLJ and FTF did not show cytotoxicity on RAW 264.7 cells. LPS stimulated RAW 264.7 cells were treated with 3 and $30\;{\mu}g/ml$ of FLJ or FTF. FLJ and FTF did not inhibit TNF-a and IL-6 secretion in both concentration of treatment. We suggest that FLJ and FTF may be useful drugs for respiratory disease. Future work will focus on the physical characteristics for inhalable formulation.

Parenteral Docetaxel Emulsion System and Its Stability

  • Kim, Hyun-Jo
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • Docetaxel is an anticancer agent with low aqueous solubility. More extensive clinical use of this drug is somewhat delayed due to lack of appropriate delivery vehicles. An attempt was made to adopt an o/w emulsion as the drug carrier which incorporated docetaxel in the propyleneglycerol stabilized by a mixed-emulsifier system. A suitable formulation was found in this study: 10 mg/mL docetaxel, 10% (w/v) oil blend, 4% (w/v) PG, 3% (w/v) Solutol HS 15 in 2.25% (w/v) glycerol solution. The formulated emulsion has very good stability when stored at $40^{\cird}C$, and the docetaxel containment efficiency can be maintained above 95% and the mean emulsion diameter around $10{\mu}m$ for at least 3 months. The formulated emulsion is a promising carrier for docetaxel and other lipophilic drugs.

Mechanism of Action of Various Vehicles That Enhance the Permeation of Ketoprofen (케토프로펜의 피부투과도를 증진시키는 다양한 용매의 작용기전)

  • Cho, Young-Joo;Choi, Hoo-Kyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.3
    • /
    • pp.165-169
    • /
    • 1998
  • The effect of various vehicles on the permeation of a model drug, ketoprofen in solution formulation was evaluated using a flow-through diffusion cell system at $37^{\circ}C$. To investigate the mechanism of permeation rate enhancement, the effects of pretreatment with various vehicles on the permeation of the drug were evaluated using 5 mg/ml solution and saturated solution. The order of permeation rate of ketoprofen across hairless mouse skin after pretreatment with various vehicles was similar to the case where the vehicles and the drug were coadministered except ethanol and oleic acid. The results indicate that the mechanism of enhancement can be direct action of the vehicles on the barrier property of the skin and/or carrier mechanism.

  • PDF