• Title/Summary/Keyword: Drug Prevention

Search Result 848, Processing Time 0.026 seconds

Serum miR-19a Predicts Resistance to FOLFOX Chemotherapy in Advanced Colorectal Cancer Cases

  • Chen, Qi;Xia, Hong-Wei;Ge, Xiao-Jun;Zhang, Yu-Chen;Tang, Qiu-Lin;Bi, Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7421-7426
    • /
    • 2013
  • Background: Colorectal cancer is the fourth most common cancer worldwide and the second leading cause of cancer-related death. FOLFOX is the most common regimen used in the first-line chemotherapy in advanced colorectal cancer, but only half of the patients respond to this regimen and we have almost no clue in predicting resistance in such first-line application. Methods: To explore the potential molecular biomarkers predicting the resistance of FOLFOX regimen as the first-line treatment in advanced colorectal cancer, we screened microRNAs in serum samples from drug-responsive and drug-resistant patients by microarrays. Then differential microRNA expression was further validated in an independent population by reverse transcription and quantitative real-time PCR. Results: 62 microRNAs expressing differentially with fold-change >2 were screened out by microarray analysis. Among them, 5 (miR-221, miR-222, miR-122, miR-19a, miR-144) were chosen for further validation in an independent population (N=72). Our results indicated serum miR-19a to be significantly up-regulated in resistance-phase serum (p=0.009). The ROC curve analysis showed that the sensitivity of serum miR-19a to discriminate the resistant patients from the response ones was 66.7%, and the specificity was 63.9% when the AUC was 0.679. We additionally observed serum miR-19a had a complementary value for cancer embryonic antigen (CEA). Stratified analysis further revealed that serum miR-19a predicted both intrinsic and acquired drug resistance. Conclusions: Our findings confirmed aberrant expression of serum miR-19a in FOLFOX chemotherapy resistance patients, suggesting serum miR-19a could be a potential molecular biomarker for predicting and monitoring resistance to first-line FOLFOX chemotherapy regimens in advanced colorectal cancer patients.

Combined Treatment with Stattic and Docetaxel Alters the Bax/Bcl-2 Gene Expression Ratio in Human Prostate Cancer Cells

  • Mohammadian, Jamal;Sabzichi, Mehdi;Molavi, Ommoleila;Shanehbandi, Dariush;Samadi, Nasser
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.5031-5035
    • /
    • 2016
  • Docetaxel, recognized as a stabilizing microtubule agent, is frequently administrated as a first line treatment for prostate cancers. Due to high side effects of monotherapy, however, combinations with novel adjuvants have emerged as an alternative strategy in cancer therapy protocols. Here, we investigated the combined effects of stattic and docetaxel on the DU145 prostate cancer cell line. Cytotoxicity was evaluated by MTT assay. To understand molecular mechanisms of stattic action, apoptotic related genes including Bcl-2, Mcl-1, Survivin and Bax were evaluated by real-time RT-PCR. Alteration in the expression of pro-apoptotic Bax and anti-apoptotic Bcl-2 genes and Bax/Bcl-2 ratio were investigated via the $2^{{\Delta}{\Delta}CT}$ method. The $IC_{50}$ values for docetaxel and stattic were $3.7{\pm}0.9nM$ and $4.6{\pm}0.8{\mu}M$, respectively. Evaluation of key gene expression levels revealed a noticeable decrease in antiapoptotic Bcl-2 and Mcl-1 along with an increase in pro-apoptotic Bax mRNA levels (p<0.05). Our results suggest that combination of a STAT3 inhibitor with doctaxel can be considered as a potent strategy for induction of apoptosis via increasing Bax mRNA expression.

Preparation and Evaluation of Chrysin Encapsulated in PLGA-PEG Nanoparticles in the T47-D Breast Cancer Cell Line

  • Mohammadinejad, Sina;Akbarzadeh, Abolfazl;Rahmati-Yamchi, Mohammad;Hatam, Saeid;Kachalaki, Saeed;Zohreh, Sanaat;Zarghami, Nosratollah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3753-3758
    • /
    • 2015
  • Background: Polymeric nanoparticles are attractive materials that have been widely used in medicine for drug delivery, with therapeutic applications. In our study, polymeric nanoparticles and the anticancer drug, chrysin, were encapsulated into poly (D, L-lactic-co-glycolic acid) poly (ethylene glycol) (PLGA-PEG) nanoparticles for local treatment. Materials and Methods: PLGA: PEG triblock copolymers were synthesized by ring-opening polymerization of D, L-lactide and glycolide as an initiator. The bulk properties of these copolymers were characterized using 1H nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy. In addition, the resulting particles were characterized by scanning electron microscopy. Results: The chrysin encapsulation efficiency achieved for polymeric nanoparticles was 70% control of release kinetics. The cytotoxicity of different concentration of pure chrysin and chrysin loaded in PLGA-PEG ($5-640{\mu}M$) on T47-D breast cancer cell line was analyzed by MTT-assay. Conclusions: There is potential for use of these nanoparticles for biomedical applications. Future work should include in vivo investigation of the targeting capability and effectiveness of these nanoparticles in the treatment of breast cancer.

High Expression of Lung Resistance Protein mRNA at Diagnosis Predicts Poor Early Response to Induction Chemotherapy in Childhood Acute Lymphoblastic Leukemia

  • Bhatia, Prateek;Masih, Shet;Varma, Neelam;Bansal, Deepak;Trehan, Amita
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6663-6668
    • /
    • 2015
  • Background: Treatment failure in leukemia is due to either pharmacokinetic resistance or cell resistance to drugs. Materials and Methods: Gene expression of multiple drug resistance protein (MDR-1), multidrug resistance-related protein (MRP) and low resistance protein (LRP) was assessed in 45 pediatric ALL cases and 7 healthy controls by real time PCR. The expression was scored as negative, weak, moderate and strong. Results: The male female ratio of cases was 2.75:1 and the mean age was 5.2 years. Some 26/45 (58%) were in standard risk, 17/45(38%) intermediate and 2/45 (4%) in high risk categorie, 42/45 (93%) being B-ALL and recurrent translocations being noted in 5/45 (11.0%). Rapid early response (RER) at day 14 was seen in 37/45 (82.3%) and slow early response (SER) in 8/45 (17.7%) cases. Positive expression of MDR-1, LRP and MRP was noted in 14/45 (31%), 15/45 (33%) and 27/45 (60%) cases and strong expression in 3/14 (21%), 11/27 (40.7%) and 8/15 (53.3%) cases respectively. Dual or more gene positivity was noted in 17/45 (38%) cases. 46.5 % (7/15) of LRP positive cases at day 14 were in RER as compared to 100% (30/30) of LRP negative cases (p<0.05). All 8 (100%) LRP positive cases in SER had strong LRP expression (p=<0.05). Moreover, only 53.3% of LRP positive cases were in haematological remission at day 30 as compared to 100% of LRP negative cases (p=<0.05). Conclusions: Our study indicated that increased LRP expression at diagnosis in pediatric ALL predicts poor response to early treatment and hence can be used as a prognostic marker. However, larger prospective studies with longer follow up are needed, to understand the clinical relevance of drug resistance proteins.

Effects of Fresh Yellow Onion Consumption on CEA, CA125 and Hepatic Enzymes in Breast Cancer Patients: A Double-Blind Randomized Controlled Clinical Trial

  • Jafarpour-Sadegh, Farnaz;Montazeri, Vahid;Adili, Ali;Esfehani, Ali;Rashidi, Mohammad-Reza;Mesgari, Mehran;Pirouzpanah, Saeed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7517-7522
    • /
    • 2015
  • Onion (Allium cepa) consumption has been remarked in folk medicine which has not been noted to be administered so far as an adjunct to conventional doxorubicin-based chemotherapy in breast cancer patients. To our knowledge, this is the first study aimed to investigate the effects of consuming fresh yellow onions on hepatic enzymes and cancer specific antigens compared with a low-onion containing diet among breast cancer (BC) participants treated with doxorubicin. This parallel design randomized controlled clinical trial was conducted on 56 BC patients whose malignancy was confirmed with histopathological examination. Subjects were assigned in a stratified-random allocation into either group received body mass index dependent 100-160 g/d of onion as high onion group (HO; n=28) or 30-40 g/d small onion in low onion group (LO; n=28) for eight weeks intervention. Participants, care givers and laboratory assessor were blinded to the assignments (IRCT registry no: IRCT2012103111335N1). The compliance of participants in the analysis was appropriate (87.9%). Comparing changes throughout pre- and post-dose treatments indicated significant controls on carcinoembryonic antigen, cancer antigen-125 and alkaline phosphatase levels in the HO group (P<0.05). Our findings for the first time showed that regular onion administration could be effective for hepatic enzyme conveying adjuvant chemotherapy relevant toxicity and reducing the tumor markers in BC during doxorubicin-based chemotherapy.

Overcoming 5-Fu Resistance of Colon Cells through Inhibition of Glut1 by the Specific Inhibitor WZB117

  • Liu, Wei;Fang, Yong;Wang, Xiao-Tong;Liu, Ju;Dan, Xing;Sun, Lu-Lu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7037-7041
    • /
    • 2014
  • Background: 5-Fluorouracil (5-FU) is the most commonly used drug in colon cancer therapy. However, despite impressive clinical responses initially, development of drug resistance to 5-Fu in human tumor cells is the primary cause of failure of chemotherapy. In this study, we established a 5-Fu-resistant human colon cancer cell line for comparative chemosensitivity studies. Materials and Methods: Real time PCR and Western blotting were used to determine gene expression levels. Cell viability was measured by MTT assay. Glucose uptake was assess using an Amplex Red Glucose/Glucose Oxidase assay kit. Results: We found that 5-Fu resistance was associated with the overexpression of Glut1 in colon cancer cells. 5-Fu treatment at low toxic concentration induced Glut1 expression. At the same time, upregulation of Glut1 was detected in 5-Fu resistant cells when compared with their parental cells. Importantly, inhibition of Glut1 by a specific inhibitor, WZB117, significantly increased the sensitivity of 5-Fu resistant cells to the drug. Conclusions: This study provides novel information for the future development of targeted therapies for the treatment of chemo-resistant colon cancer patients. In particular it demonstrated that Glut1 inhibitors such as WZB117 may be considered an additional treatment options for patients with 5-Fu resistant colon cancers.

Combination between Taxol-Encapsulated Liposomes and Eruca sativa Seed Extract Suppresses Mammary Tumors in Female Rats Induced by 7,12 Dimethylbenz(α)anthracene

  • Shaban, Nadia;Abdel-Rahman, Salah;Haggag, Amany;Awad, Doaa;Bassiouny, Ahmad;Talaat, Iman
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.117-123
    • /
    • 2016
  • Taxol (paclitaxel) is a powerful anti-cancer drug widely used against several types of malignant tumors. Because Taxol may exert several side effects, a variety of formulations have been developed. One of these features liposomes, regarded as one of the most promising drug carriers, biocompatible and best able to reduce drug toxicity without changing efficacy against tumor cells. Eruca sativa seed extract (SE) is considered a promising natural product from cruciferous vegetables against breast cancer, increasing chemotherapeutic and eliminating harmful side effects. The effects of Taxol-encapsulated liposomes (T) alone and in combination between Eruca sativa seed extract on nuclear factor kappa B (NF-${\kappa}B$), cyclooxygenase-2 (COX-2) and B-cell lymphoma-2 (Bcl-2) gene expression levels were investigated in rat mammary gland carcinogenesis induced by 7,12 dimethylbenz(${\alpha}$) anthracene (DMBA) using qRT-PCR. The results showed that DMBA increased NF-${\kappa}B$, COX-2 and Bcl-2 gene expression levels and lipid peroxidation (LP), while decreasing glutathione-S-transferase (GST) and superoxide dismutase (SOD) activities and total antioxidant concentration (TAC) compared to the control group. T and T-SE treatment reduced NF-${\kappa}B$, COX-2 and Bcl-2 gene expression levels and LP. Hence, T and T-SE treatment appeared to reduce inflammation and cell proliferation, while increasing apoptosis, GST and SOD activities and TAC.

FoxM1 as a Novel Therapeutic Target for Cancer Drug Therapy

  • Xu, Xin-Sen;Miao, Run-Chen;Wan, Yong;Zhang, Ling-Qiang;Qu, Kai;Liu, Chang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.23-29
    • /
    • 2015
  • Background: Current cancer therapy mainly focuses on identifying novel targets crucial for tumorigenesis. The FoxM1 is of preference as an anticancer target, due to its significance in execution of mitosis, cell cycle progression, as well as other signal pathways leading to tumorigenesis. FoxM1 is partially regulated by oncoproteins or tumor suppressors, which are often mutated, lost, or overexpressed in human cancer. Since sustaining proliferating signaling is an important hallmark of cancer, FoxM1 is overexpressed in a series of human malignancies. Alarge-scale gene expression analysis also identified FoxM1 as a differentially-expressed gene in most solid tumors. Furthermore, overexpressed FoxM1 is correlated with the prognosis of cancer patients, as verified in a series of malignancies by Cox regression analysis. Thus, extensive studies have been conducted to explore the roles of FoxM1 in tumorigenesis, making it an attractive target for anticancer therapy. Several antitumor drugs have been reported to target or inhibit FoxM1 expression in different cancers, and down-regulation of FoxM1 also abrogates drug resistance in some cancer cell lines, highlighting a promising future for FoxM1 application in the clinic.

Alkylglyceronephosphate Synthase (AGPS) Alters Lipid Signaling Pathways and Supports Chemotherapy Resistance of Glioma and Hepatic Carcinoma Cell Lines

  • Zhu, Yu;Liu, Xing-Jun;Yang, Ping;Zhao, Meng;Lv, Li-Xia;Zhang, Guo-Dong;Wang, Qin;Zhang, Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3219-3226
    • /
    • 2014
  • Chemotherapy continues to be a mainstay of cancer treatment, although drug resistance is a major obstacle. Lipid metabolism plays a critical role in cancer pathology, with elevated ether lipid levels. Recently, alkylglyceronephosphate synthase (AGPS), an enzyme that catalyzes the critical step in ether lipid synthesis, was shown to be up-regulated in multiple types of cancer cells and primary tumors. Here, we demonstrated that silencing of AGPS in chemotherapy resistance glioma U87MG/DDP and hepatic carcinoma HepG2/ADM cell lines resulted in reduced cell proliferation, increased drug sensitivity, cell cycle arrest and cell apoptosis through reducing the intracellular concentration of lysophosphatidic acid (LPA), lysophosphatidic acid-ether (LPAe) and prostaglandin E2 (PGE2), resulting in reduction of LPA receptor and EP receptors mediated PI3K/AKT signaling pathways and the expression of several multi-drug resistance genes, like MDR1, MRP1 and ABCG2. ${\beta}$-catenin, caspase-3/8, Bcl-2 and survivin were also found to be involved. In summary, our studies indicate that AGPS plays a role in cancer chemotherapy resistance by mediating signaling lipid metabolism in cancer cells.

Serum Vascular Endothelial Growth Factor-A (VEGF-A) as a Biomarker in Squamous Cell Carcinoma of Head and Neck Patients Undergoing Chemoradiotherapy

  • Srivastava, Vikas Kumar;Gara, Rishi Kumar;Rastogi, Namrata;Mishra, Durga Prasad;Ahmed, Mohd Kaleem;Gupta, Shalini;Goel, Madhu Mati;Bhatt, Madan Lal Brahma
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3261-3265
    • /
    • 2014
  • Background: To evaluate serum VEGF-A levels in squamous cell carcinoma of head and neck (SCCHN) patients and relationships with response to therapy. Materials and Methods: Serum VEGF-A levels in patients (n=72) treated with radiotherapy (RT) or radio-chemotherapy (RCT) and controls (n=40) were measured by ELISA. Results: Serum VEGF-A levels of the SCCHN cases were significantly higher (p=0.001) than in healthy controls, and in patients with positive as compared to negative lymph node status (p=0.004). Similarly, patients with advanced stage (Stage III-IV) disease had more greatly elevated levels of serum VEGF-A level than their early stage (Stage I-II) counterparts (p=0.001). In contrast, there was no significant difference (p=0.57) in serum level of VEGF-A in patients with advanced T-stage (T3-4) as compared to early stage (T1-2). Similarly, patients with distant metastasis had no significant (p=0.067) elevation in serum VEGF-A level as compared to non-metastatic disease. However, the non-responder patients had significantly higher serum VEGF-A level as compared to responders (p=0.001). Conclusions: Our results suggest that the serum VEGF-A level may be a useful biomarker for the prediction of response to therapy in SCCHN.