• Title/Summary/Keyword: Drug Prevention

Search Result 848, Processing Time 0.042 seconds

Roles of Cancer Registries in Enhancing Oncology Drug Access in the Asia-Pacific Region

  • Soon, Swee-Sung;Lim, Hwee-Yong;Lopes, Gilberto;Ahn, Jeonghoon;Hu, Min;Ibrahim, Hishamshah Mohd;Jha, Anand;Ko, Bor-Sheng;Lee, Pak Wai;MacDonell, Diana;Sirachainan, Ekaphop;Wee, Hwee-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2159-2165
    • /
    • 2013
  • Cancer registries help to establish and maintain cancer incidence reporting system, serve as a resource for investigation of cancer and its causes, and provide information for planning and evaluation of preventive and control programs. However, their wider role in directly enhancing oncology drug access has not been fully explored. We examined the value of cancer registries in oncology drug access in the Asia-Pacific region on three levels: (1) specific registry variable types; (2) macroscopic strategies on the national level; and (3) a regional cancer registry network. Using literature search and proceedings from an expert forum, this paper covers recent cancer registry developments in eight economies in the Asia-Pacific region - Australia, China, Hong Kong, Malaysia, Singapore, South Korea, Taiwan, and Thailand - and the ways they can contribute to oncology drug access. Specific registry variables relating to demographics, tumor characteristics, initial treatment plans, prognostic markers, risk factors, and mortality help to anticipate drug needs, identify high-priority research area and design access programs. On a national level, linking registry data with clinical, drug safety, financial, or drug utilization databases allows analyses of associations between utilization and outcomes. Concurrent efforts should also be channeled into developing and implementing data integrity and stewardship policies, and providing clear avenues to make data available. Less mature registry systems can employ modeling techniques and ad-hoc surveys while increasing coverage. Beyond local settings, a cancer registry network for the Asia-Pacific region would offer cross-learning and research opportunities that can exert leverage through the experiences and capabilities of a highly diverse region.

Physicochemical Characteristics of Fe3O4 Magnetic Nanocomposites Based on Poly(N-isopropylacrylamide) for Anti-cancer Drug Delivery

  • Davaran, Soodabeh;Alimirzalu, Samira;Nejati-Koshki, Kazem;Nasrabadi, Hamid Tayefi;Akbarzadeh, Abolfazl;Khandaghi, Amir Ahmad;Abbasian, Mojtaba;Alimohammadi, Somayeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.49-54
    • /
    • 2014
  • Background: Hydrogels are a class of polymers that can absorb water or biological fluids and swell to several times their dry volume, dependent on changes in the external environment. In recent years, hydrogels and hydrogel nanocomposites have found a variety of biomedical applications, including drug delivery and cancer treatment. The incorporation of nanoparticulates into a hydrogel matrix can result in unique material characteristics such as enhanced mechanical properties, swelling response, and capability of remote controlled actuation. Materials and Methods: In this work, synthesis of hydrogel nanocomposites containing magnetic nanoparticles are studied. At first, magnetic nanoparticles ($Fe_3O_4$) with an average size 10 nm were prepared. At second approach, thermo and pH-sensitive poly (N-isopropylacrylamide -co-methacrylic acid-co-vinyl pyrrolidone) (NIPAAm-MAA-VP) were prepared. Swelling behavior of co-polymer was studied in buffer solutions with different pH values (pH=5.8, pH=7.4) at $37^{\circ}C$. Magnetic iron oxide nanoparticles ($Fe_3O_4$) and doxorubicin were incorporated into copolymer and drug loading was studied. The release of drug, carried out at different pH and temperatures. Finally, chemical composition, magnetic properties and morphology of doxorubicin-loaded magnetic hydrogel nanocomposites were analyzed by FT- IR, vibrating sample magnetometry (VSM), scanning electron microscopy (SEM). Results: The results indicated that drug loading efficiency was increased by increasing the drug ratio to polymer. Doxorubicin was released more at $40^{\circ}C$ and in acidic pH compared to that $37^{\circ}C$ and basic pH. Conclusions: This study suggested that the poly (NIPAAm-MAA-VP) magnetic hydrogel nanocomposite could be an effective carrier for targeting drug delivery systems of anti-cancer drugs due to its temperature sensitive properties.

Synthesis of 4,5-substituted 3-alkoxy-6-allylthiopyridazine Derivatives (4,5-치환 3-alkoxy-6-allylthiopyridazine 유도체 합성)

  • 권순경
    • YAKHAK HOEJI
    • /
    • v.46 no.3
    • /
    • pp.155-160
    • /
    • 2002
  • Through a modification of allicin structure a disagreeable odor and chemical instability of allicin can be improved. 3-Alkoxy-6-allylthiopyridazine derivatives exhibit a superior effect for prevention and treatment of hepatic diseases induced by carbon tetrachloride and aflatoxin B1 and for prevention of human tissues from radiation. These compounds inhibit also efficiently SK-Hep-1 cell proliferation through induction of apoptosis. So another 4,5-mono- or di-substituted 3-alkyloxy-6-allylthiopyridazine derivatives were synthesized on purpose to find out SAR of allylthiopyridazine in hepatoprotective and hepatotherapeutic acitivitis and to develop more effective drug candidate.

Development of a New Approach to Determine the Potency of Bacille Calmette-Guérin Vaccines Using Flow Cytometry

  • Gweon, Eunjeong;Choi, Chanwoong;Kim, Jaeok;Kim, Byungkuk;Kang, Hyunkyung;Park, Taejun;Ban, Sangja;Bae, Minseok;Park, Sangjin;Jeong, Jayoung
    • Osong Public Health and Research Perspectives
    • /
    • v.8 no.6
    • /
    • pp.389-396
    • /
    • 2017
  • Objectives: To circumvent the limitations of the current golden standard method, colony-forming unit (CFU) assay, for viability of Bacille Calmette-$Gu{\acute{e}}rin$ (BCG) vaccines, we developed a new method to rapidly and accurately determine the potency of BCG vaccines. Methods: Based on flow cytometry (FACS) and fluorescein diacetate (FDA) as the most appropriate fluorescent staining reagent, 17 lots of BCG vaccines for percutaneous administration and 5 lots of BCG vaccines for intradermal administration were analyzed in this study. The percentage of viable cells measured by flow cytometry along with the total number of organisms in BCG vaccines, as determined on a cell counter, was used to quantify the number of viable cells. Results: Pearson correlation coefficients of FACS and CFU assays for percutaneous and intradermal BCG vaccines were 0.6962 and 0.7428, respectively, indicating a high correlation. The coefficient of variation value of the FACS assay was less than 7%, which was 11 times lower than that of the CFU assay. Conclusion: This study contributes to the evaluation of new potency test method for FACS-based determination of viable cells in BCG vaccines. Accordingly, quality control of BCG vaccines can be significantly improved.

The Analysis of Acute Drug Intoxication in Emergency Medical Center (응급의료센터에 내원한 음독환자의 약물중독 분석)

  • Lee, Tae-Yong;Kim, Seon-Rye;Cho, Byung-Jun;Park, Jeong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.750-757
    • /
    • 2010
  • In order to investigate acute drug intoxication trends in the elderly who visited emergency medical center, Data were collected from the records of poisoning patients visited five different hospitals from January 1, 2007 to December 31, 2007. The analysis was conducted by using 624 cases from these hospitals. The results are as follows. The study was designed to be divided into two categories of elderly and those under age 65. The criteria were as follows ; male to female ratio, those living together with families, past suicide attempts, acute drug intoxication reasons, management, mental status and the level of sobriety on arrival at the medical centers, and monthly distribution. There was no difference between two groups. In conclusion, it is necessary to develop suicide prevention program for the suicide vulnerable group. Accidental poisonings are going to continue. This means that poisoning prevention education programs must also be developed for periodic use.

Mechanism of Fatty Acid Synthase in Drug Tolerance Related to Epithelial-mesenchymal Transition of Breast Cancer

  • Li, Jun-Qin;Xue, Hui;Zhou, Lan;Dong, Li-Hua;Wei, Da-Peng;Li, Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7617-7623
    • /
    • 2014
  • Objective: The mechanism of action of fatty acid synthase (FASN) in drug tolerance of breast cancer cells with epithelial-mesenchymal transition (EMT) features was investigated. Methods: The breast cancer cell line MCF-7-MEK5 with stably occurring EMT and tumour necrosis factor-${\alpha}$ (TNF-${\alpha}$) tolerance was used as the experimental model, whereas MCF-7 acted as the control. Tumour cells were implanted into nude mice for in vivo analysis, and cerulenin was used as a FASN inhibitor. RT-PCR, real-time quantitative PCR and Western blot were employed to detect the expression of FASN, TNFR-1, TNFR-2, Wnt-1, ${\beta}$-catenin and cytC at the RNA and protein levels. Results: Compared with MCF-7, TNFR-1 expression in MCF-7-MEK5 was slightly changed, TNFR-2 was decreased, and FASN, Wnt-1, ${\beta}$-catenin and cytC were increased. The expression of Wnt-1 and ${\beta}$-catenin in MCF-7-MEK5 decreased after cerulenin treatment, whereas cytC expression increased. Conclusions: The important function of FASN in the drug tolerance of breast cancer may be due to the following mechanisms: FASN downregulated TNFR-2 expression through lipid rafts to make the cells less sensitive to TNF-${\alpha}$, and simultaneously activated the Wnt-$1/{\beta}$-catenin signalling pathway. Thus, cytC expression increased, which provided cells with anti-apoptotic capacity and induced drug tolerance.

FBW7 Upregulation Enhances Cisplatin Cytotoxicity in Non-small Cell Lung Cancer Cells

  • Yu, Hao-Gang;Wei, Wei;Xia, Li-Hong;Han, Wei-Li;Zhao, Peng;Wu, Sheng-Jun;Li, Wei-Dong;Chen, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6321-6326
    • /
    • 2013
  • Introduction: Lung cancer is extremely harmful to human health and has one of the highest worldwide incidences of all malignant tumors. Approximately 80% of lung cancers are classified as non-small cell lung cancers (NSCLCs). Cisplatin-based multidrug chemotherapy regimen is standard for such lesions, but drug resistance is an increasing problem. F-box/WD repeat-containing protein 7 (FBW7) is a member of the F-box protein family that regulates cell cycle progression, and cell growth and differentiation. FBW7 also functions as a tumor suppressor. Methods: We used cell viability assays, Western blotting, and immunofluorescence combined with siRNA interference or plasmid transfection to investigate the underlying mechanism of cisplatin resistance in NSCLC cells. Results: We found that FBW7 upregulation significantly increased cisplatin chemosensitivity and that cells expressing low levels of FBW7, such as NCI-H1299 cells, have a mesenchymal phenotype. Furthermore, siRNA-mediated silencing or plasmid-mediated upregulation of FBW7 resulted in altered epithelial-mesenchymal transition (EMT) patterns in NSCLC cells. These data support a role for FBW7 in regulating the EMT in NSCLC cells. Conclusion: FBW7 is a potential drug target for combating drug resistance and regulating the EMT in NSCLC cells.

Arsenic Trioxide Promotes Paclitaxel Cytotoxicity in Resistant Breast Cancer Cells

  • Bakhshaiesh, Tayebeh Oghabi;Armat, Marzie;Shanehbandi, Dariush;Sharifi, Simin;Baradaran, Behzad;Hejazi, Mohammad Saeed;Samadi, Nasser
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5191-5197
    • /
    • 2015
  • A partial response or resistance to chemotherapeutic agents is considered as a main obstacle in treatment of patients with cancer, including breast cancer. Refining taxane-based treatment procedures using adjuvant or combination treatment is a novel strategy to increase the efficiency of chemotherapy. PPM1D is a molecule activated by reactive oxygen species. whose expression is reported to modulate the recruitment of DNA repair molecules. In this study we examined the impact of arsenic trioxide on efficacy of paclitaxel-induced apoptosis in paclitaxel-resistant MCF-7 cells. We also investigated the expression of PPM1D and TP53 genes in response to this combination treatment. Resistant cells were developed from the parent MCF-7 cell line by applying increasing concentrations of paclitaxel. MTT assays were applied to determine the rate of cell survival. DAPI staining using fluorescent microscopy was employed to study apoptotic bodies. Real-time RT-PCR analysis was also applied to determine PPM1D mRNA levels. Our results revealed that combination of arsenic trioxide and paclitaxel elevates the efficacy of the latter in induction of apoptosis in MCF-7/PAC resistant cells. Applying arsenic trioxide also caused significant decreases in PPM1D mRNA levels (p<0.05). Our findings suggest that arsenic trioxide increases paclitaxel-induced apoptosis by down regulation of PPM1D expression. PPM1D dependent signaling can be considered as a novel target to improve the efficacy of chemotherapeutic agents in resistant breast cancer cells.

Emodin Inhibits Breast Cancer Cell Proliferation through the ERα-MAPK/Akt-Cyclin D1/Bcl-2 Signaling Pathway

  • Sui, Jia-Qi;Xie, Kun-Peng;Zou, Wei;Xie, Ming-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6247-6251
    • /
    • 2014
  • Background: The aim of the present study was to investigate the involvement of emodin on the growth of human breast cancer MCF-7 and MDA-MB-231 cells and the estrogen (E2) signal pathway in vitro. Materials and Methods: MTT assays were used to detect the effects of emodin on E2 induced proliferation of MCF-7 and MDA-MB-231 cells. Flow cytometry (FCM) was applied to determine the effect of emodin on E2-induced apoptosis of MCF-7 cells. Western blotting allowed detection of the effects of emodin on the expression of estrogen receptor ${\alpha}$, cyclin D1 and B-cell lymphoma-2 (Bcl-2), mitogen-activated protein kinases (MAPK) and phosphatidylinostiol 3-kinases (PI3K). Luciferase assays were emplyed to assess transcriptional activity of $ER{\alpha}$. Results: Emodin could inhibit E2-induced MCF-7 cell proliferation and anti-apoptosis effects, and arrest the cell cycle in G0/G1 phase, further blocking the effect of E2 on expression and transcriptional activity of $ER{\alpha}$. Moreover, Emodin influenced the ER ${\alpha}$ genomic pathway via downregulation of cyclin D1 and Bcl-2 protein expression, and influenced the non-genomic pathway via decreased PI3K/Akt protein expression. Conclusions: These findings indicate that emodin exerts inhibitory effects on MCF-7 cell proliferation via inhibiting both non-genomic and genomic pathways.

Virtual Screening Approaches in Identification of Bioactive Compounds Akin to Delphinidin as Potential HER2 Inhibitors for the Treatment of Breast Cancer

  • Patidar, Kavisha;Deshmukh, Aruna;Bandaru, Srinivas;Lakkaraju, Chandana;Girdhar, Amandeep;Gutlapalli, VR;Banerjee, Tushar;Nayarisseri, Anuraj;Singh, Sanjeev Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.2291-2295
    • /
    • 2016
  • Small molecule tyrosine kinase inhibitors targeting HER 2 receptors have emerged as an important therapeutic approach in inhibition of downstream proliferation and survival signals for the treatment of breast cancers. Recent drug discovery efforts have demonstrated that naturally occurring polyphenolic compounds like delphinidin have potential to inhibit proliferation and promote apoptosis of breast cancer cells by targeting HER2 receptors. While delphinidin may thus reduce tumour size, it is associated with serious side effects like dysphonia. Owing to the narrow therapeutic window of delphinidin, the present study aimed to identify high affinity compounds targeting HER2 with safer pharmacological profiles than delphinidin through virtual screening approaches. Delphinidin served as the query parent for identification of structurally similar compounds by Tanimoto-based similarity searching with a threshold of 95% against the PubChem database. The compounds retrieved were further subjected to Lipinski and Verber's filters to obtain drug like agents, then further filtered by diversity based screens with a cut off of 0.6. The compound with Pubchem ID: 91596862 was identified to have higher affinity than its parent. In addition it also proved to be non-toxic with a better ADMET profile and higher kinase activity. The compound identified in the study can be put to further in vitro drug testing to complement the present study.