최근, 자동차 교통사고의 인명 피해가 급속히 증가하고 있으며 경상보다는 중상 및 사망이 많은 대형사고가 증가하고 있다. 대형사고의 70% 이상은 졸음운전으로 발생한다. 따라서, 본 논문에서는 교통사고의 대형 참사를 방지하기 위한 졸음운전 방지 시스템을 연구하였다. 본 논문에서는 졸음운전 감지 시스템을 위한 실시간 눈 깜빡임 인식 방법과 이산화탄소 증가에 따른 졸음 인식을 감지하도록 제안한다. 졸음운전 감지 시스템은 기존의 영상 검출과 딥러닝을 적용하였고 이산화탄소 증가 감지는 사물인터넷 기반으로 개발하였다. 이러한 두 가지 기법을 동시에 이용한 졸음운전 방지 시스템은 기존의 제품에 비해 정확성이 향상되었다.
졸음운전은 사고발생 확률이 높고, 사고 발생 시 심각도가 높기 때문에 효율적인 졸음운전 판단 시스템이 필요하다. 그러나 생체 신호나 비전을 이용한 졸음운전 판단시스템은 비용 측면에서 활용되기가 어렵다. 이에 본 논문에서는 추가적인 비용 없이 대부분의 차량에 기본 장착되어 있는 조향각 센서(steering angle sensor)와 차량정보(brake switch, throttle position signal, vehicle speed)를 이용하여 졸음운전자의 조향패턴 중 하나인 저킹 판단을 이용한 졸음운전 판단 알고리즘을 제안한다. 본 연구에서는 각 변수의 임계값을 제시하고, HILS(Hardware in the Loop Simulation)에서 CAN을 통해 취득한 차량의 데이터와 Matlab 프로그램을 이용하여 알고리즘을 평가한다.
Drowsy driving is a significant factor in traffic accidents, so driver drowsiness detection system based on computer vision for convenience and safety has been actively studied. However, it is difficult to accurately detect the driver drowsiness in complex background and environmental change. In this paper, it proposed the driver drowsiness detection algorithm to determine whether the driver is drowsy through the measurement standard of a yawn, eyes drowsy status, and nod based on facial features. The proposed algorithm detect the driver drowsiness in the complex background, and it is robust to changes in the environment. The algorithm can be applied in real time because of the processing speed faster. Throughout the experiment, we confirmed that the algorithm reliably detected driver drowsiness. The processing speed of the proposed algorithm is about 0.084ms. Also, the proposed algorithm can achieve an average detection rate of 98.48% and 97.37% for a yawn, drowsy eyes, and nod in the daytime and nighttime.
Driving is a complex vigilance task that includes improper lookout, excessive speed and inattention. The primary objective of this research is to detect driver drowsiness so that the driver can be alerted to an impending traffic accident in performance. We developed the automatic detection and warning system during drowsy driving. A drowsiness detection system must be able to monitor driver status and detect the detrimental changes of a driver performance. Eyeblink has been found to be a reliable factor of drowsiness detection in earlier studies. As an additional parameter, we also considered the yawning which often occurs in a low vigilance state and predicts the drowsy state. We used a computer vision method to extract the eyeblink and yawning in the face image sequences. When the drowsy state was detected, the driver was refreshed by alarming device and menthol scent generator after deciding the warning level by fuzzy logic. For the evaluation of our system, we measured the physiological parameters such as EOG and EEG. The results indicated that it is possible to detect and alert the driver drowsiness temporarily or continuously by using our system.
본 논문에서 호흡 기반의 운전자 졸음 감지 센서 시스템에 대해 언급하였다. 센서 시스템은 운전자의 복부 부분 안전벨트에 장착된 PZT 압력센서와 개인용 컴퓨터로 구성됐다. PZT 압력센서는 호흡 시 운전자 복부의 움직임에 의해 압력센서에 가해지는 압력의 변화를 측정하기 위해 사용되었고 운전자의 졸음을 감지하기 위한 신호처리는 Labview를 사용하여 개발됐다. 30세 남자 운전자를 상대로 운전자 졸음 감지 관련 실험들이 수행되어 졌다. 운전자가 각성상태일때 호흡의 크기는 졸음상태일 때보다 컸으며 반대로 호흡 주파수는 낮았다. 이런 실험을 바탕으로 제작된 졸음 감지 센서 시스템은 운전자의 졸음을 성공적으로 실시간 감지할 수 있었다.
본 논문은 지역적 특징을 빠르게 추출할 수 있는 SURF(Speed Up Robust Features) 알고리즘을 이용해 안경과 조명 등 자동차 환경에 적응적인 새로운 눈 상태 검출방법을 제안하였다. 또한, 베이지안 추론을 이용하여 각 운전자에 대해 세 가지 고유의 눈 상태 템플릿을 실시간적으로 생성함으로써 눈 상태 검출 성능을 향상시켰다. 주 야간, 안경 착용 시, 미착용 시 등 여러 환경에 대한 성능 실험 결과 주 야간 환경에서 각각 평균 98.1%와 96.0%의 검출률을, 공개된 ZJU데이터베이스에 대한 실험 결과 평균 97.8%의 검출률을 보임으로써 제안된 방법의 우수성을 보였다.
Prevention of drowsy driving is one of the important issues for safe driving. In this study, the algorithm for detection of drowsy driving has been developed. The algorithm was implemented by applying template matching and line profile, which detects eye blink. The accuracy of eye detection and blink detection was $97.45{\pm}3.67%$ and $98.50{\pm}0.92%$, which was resulted from the verification experiment that 21 subjects participated. Consequently, the algorithm is expected to be used to prevent sleep-deprived driving.
본 논문은 지능형 자동차 개발을 위한 주간 및 야간 환경에서 차량 운전 시 발생할 수 있는 다양한 조명을 극복하고 운전자 졸음 상태를 단일 CCD(Charge Coupled Device) 카메라를 통해 감시하는 시스템을 제안한다. 운전 중 운전자 눈을 감시하여 졸음 상태를 판단하는 시스템에서 눈 검출 및 눈꺼풀 움직임 측정은 선행되어야 할 중요한 과정이다. 따라서 비전기반 시스템의 가장 큰 단점인 조명변화를 극복하며 눈 검출 성능을 높이고 실시간 처리가 가능한 간단한 조명 보정 알고리즘을 제안하였으며 또한 신뢰성 있는 졸음 판단을 위해 효율적인 눈꺼풀 움직임 측정 방법을 제안한다. 이러한 시스템은 실시간으로 처리되어야 하며 이를 위해 제안한 방법과 더불어 효율적인 눈 검증 방법으로 단계적 SVM(Cascaded Support Vector Machine)을 적용하였다. 한편, 제안한 알고리즘의 성능 측정을 위해 주간 및 야간의 다 양한 조명 변화 속에서 주행 중 수집된 운전자 동영상을 사용하였으며 자체 수집된 동영상에 대해 98% 이상의 눈 검출 성능 및 신뢰성 있는 눈꺼풀 움직임을 측정하였다. 최종 졸음판단 결과는 수집된 각각의 동 영상에 대한 PERCLOS(The percentage of eye-closed time during a period)를 비교함으로써 제안한 시스템의 성능 및 우수성을 보였다.
Jinmo Yang;Janghwan Kim;R. Young Chul Kim;Kidu Kim
International Journal of Internet, Broadcasting and Communication
/
제15권4호
/
pp.142-148
/
2023
In Modern days, Self-driving for modern people is an absolute necessity for transportation and many other reasons. Additionally, after the outbreak of COVID-19, driving by oneself is preferred over other means of transportation for the prevention of infection. However, due to the constant exposure to stressful situations and chronic fatigue one experiences from the work or the traffic to and from it, modern drivers often drive under drowsiness which can lead to serious accidents and fatality. To address this problem, we propose a drowsy driving prevention learning model which detects a driver's state of drowsiness. Furthermore, a method to sound a warning message after drowsiness detection is also presented. This is to use MoveNet to quickly and accurately extract the keypoints of the body of the driver and Dense Neural Network(DNN) to train on real-time driving behaviors, which then immediately warns if an abnormal drowsy posture is detected. With this method, we expect reduction in traffic accident and enhancement in overall traffic safety.
본 논문에서는 카메라로부터 운전자의 눈동자, 하품을 인식하여 운전자의 졸음운전을 방지하는 방법을 제안한다. Viola-Jones 알고리즘을 사용하여 얼굴의 영역을 확보하고 이로부터 눈 영역과 입 영역을 추출해낸다. 눈 영역에서는 Hough변환을 적용하여 눈동자를 인식하여 졸음을 인식한다. 입 영역에는 전처리 필터를 적용하여 하품할 때 혀의 피부색을 검출한 뒤에 Sub-Window를 사용하여 하품 여부를 판단한다. 실험 결과 하품 인식률은 87%에 달했다. 본 논문에서 제안된 방법을 사용함으로서 졸음운전에 대한 사고를 줄이는 데 기여할 수 있을 것으로 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.