• Title/Summary/Keyword: Drought event

Search Result 60, Processing Time 0.021 seconds

Development of Drought Map Based on Three-dimensional Spatio-temporal Analysis of Drought (가뭄사상에 대한 3차원적 시공간 분석을 통한 가뭄지도 개발)

  • Yoo, Jiyoung;So, Byung-Jin;Kwon, Hyun-Han;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • A drought event is characterized by duration, severity and affected area. In general, after calculating a drought index using hydro-meteorological time series at a station, a drought event is defined based on the run theory to identify the beginning and end time. However, this one-dimensional analysis has limitations for analyzing the spatio-temporal occurrence characteristics and movement paths of drought. Therefore, this study is to define a three-dimensional drought event using a simple clustering algorithm and to develop a drought map that can be used to understand the drought severity according to the spatio-temporal expansion of drought. As a result, compared with the two-dimensional monitoring information to show spatial distribution of drought index, a proposed drought map is able to show three-dimensional drought characteristics inclusing drought duration, spatial cumulative severity, and centroid of drought. The analysis of drought map indicated that there was a drought event which had the affected area less than 10 % while on occations while there were 11 drought events (44 %) which had the affected area more a than 90 % of the total area. This means that it is important to understand the relationship between spatial variation of drought affected area and severity corresponding to various drought durations. The development of drought map based on three-dimensional drought analysis is useful to analyze the spatio-temporal occurrence characteristics and propagation patterns of regional drought which can be utilized in developing mitigation measures for future extreme droughts.

A Study on the Evaluation of Drought from Monthly Rainfall Data (월강우자료에 의한 한발측정)

  • Hwang, Eun;Choi, Deog-Soon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.3
    • /
    • pp.35-45
    • /
    • 1984
  • Generally speaking, agriculture exist in a climatic environment of uncertainty. Namely, normal rainfall value, as given by the mean values, does not exist. Thought on exists, itl does not affect like extreme Precipitation value on the part of agriculture and of others. Therefore, it is important that we measure the duration and severity index of drought caused by extreme precipitation deficit. In this purpose, this study was dealt with the calculation of drought duration and severity indexs by the method of monthly weighting coefficient. There is no quantitive definition of drought that is universally acceptable. Most of the criteria was used to identify drought have been arbitrary because a drought is a 'non-event' as opposed to a distinct event such as a flood. Therefore, confusion arises when an attempt is made to define the drought phenomenon, the calculation of duration, drought index is based on the following four fundamental question, and this study was dealt with the answers of these four questions as they related to this analytical method, as follows. First, the primary interest in this study is to be the lack of precipitation as it relates to agricultural effective rainfall. Second, the time interval was used to be month in this analysis. Third, Drought event, distinguished analytically from other event, is noted by monthly weighting coefficient method based on monthly rainfall data. Fin-ally, the seven regions used in this study have continually affected by drought on account of their rainfall deficit. The result from this method was very similar to the previous papers studied by many workers. Therefore, I think that this method is very available in Korea to identify the duration of drought, the deficit of precipitation and severity index of drought, But according to the climate of Korea exist the Asia Monsoon zone. The monthly weighting coefficient is modify a little, Because get out of 0.1-0.4 occasionally.

  • PDF

Development of Drought Monitoring System: II. Quantitative Drought Monitoring and Drought Outlook Methodology (가뭄모니터링 시스템 구축: II. 정량적 가뭄 모니터링 및 가뭄전망기법 개발)

  • Lee Joo-Heon;Jeong Sang-Man;Kim Jea-Han;Ko Yang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.9 s.170
    • /
    • pp.801-812
    • /
    • 2006
  • In this study, Combined Drought Index which can monitor the drought severity and intensity has been developed using PDSI, SPI and MSWSI. To verify the accuracy and applicability of combined drought index, Drought map of Korea using the combined drought index has compared with past drought event. Drought map using the combined drought index shows good accordance with past drought event and accurate quantitative drought monitoring results. Also the drought outlook technique has been developed using the weather forecast data of Korea Meteorological Administration (KMA). Drought outlook technique of this study can be used effectively as a primitive stage tool for real time drought forecast. As a result of this study, Integrated drought monitoring system has been developed which has capabilities of producing and generating the drought monitoring map and drought outlook map as well as various kinds of drought related information.

Drought Triggers and Monitoring System (가뭄 경보기준과 모니터링 시스템)

  • Lee, Dong-Ryul;Lee, Dea-Hee;Kang, Shin-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.375-384
    • /
    • 2003
  • Severe drought tends to occur in almost event five years in Korea. Drought responses have been well operated in close collaboration with the central, local government and the water management authorities on the institutional framework. However, the responses are usually post-activities to a drought event. The responses often face difficulties in operating and managing process due to an absence of a drought monitoring system and drought triggers. The objective of this study is to set up drought triggers through a time-spatial interpretation of drought index and the government responses during historical drought events. Drought triggers are divided into four categories: advisory, watch, warning and emergency stage. The range and drought-impacted area of an each stage in triggers have been addressed using drought index. Furthermore, a web-based drought monitoring system is illustrated.

Determination of drought events considering the possibility of relieving drought and estimation of design drought severity (가뭄해갈 가능성을 고려한 가뭄사상의 결정 및 확률 가뭄심도 산정)

  • Yoo, Ji Young;Yu, Ji Soo;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.275-282
    • /
    • 2016
  • The objective of this study is to propose a new method to determine the drought event and the design drought severity. In order to define a drought event from precipitation data, theory of run was applied with the cumulative rainfall deficit. When we have a large amount of rainfall over the threshold level, in this study, we compare with the previous cumulative rainfall deficit to determine whether the drought is relieved or not. The recurrence characteristics of the drought severity on the specific duration was analyzed by the conditional bivariate copula function and confidence intervals were estimated to quantify uncertainties. The methodology was applied to Seoul station with the historical dataset (1909~2015). It was observed that the past droughts considered as extreme hydrological events had from 10 to 50 years of return period. On the other hand, the current on-going drought event started from 2013 showed the significantly higher return period. It is expected that the result of this study may be utilized as the reliable criteria based on the concept of return period for the drought contingency plan.

Analysis of Drought Propagation from Meteorological to Hydrological Drought Considering Spatio-temporal Moving Pattern of Drought Events (가뭄사상의 시공간적 이동 패턴을 고려한 기상학적 가뭄에서 수문학적 가뭄으로의 전이 분석)

  • Yoo, Jiyoung;So, Byung-Jin;Lee, Joo-Heon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.135-143
    • /
    • 2020
  • Natural drought is a three-dimensional phenomenon that simultaneously evolves in time and space. To evaluate the link between meteorological and hydrological droughts, we defined a drought event from a three-dimensional perspective and analyzed the propagation characteristics in time and spaces. Overall results indicated that 77 % of the total cases of spatio-temporal droughts was propagated based on the single category relationship between meteorological and hydrological drought events, while 23 % was affected by multiple meteorological drought events to the occurrence of hydrological drougts. Especially, it turned out that the hydrological drought was caused by the spatio-temporal effects of the propagation of four meteorological drought events generated due to long-term lack of precipitation in 1994-1995. In addition, the meteorological drought caused by the lack of precipitation in the summer of 2001 lasted for several months, and was propagated to the hydrological drought in April 2002.

Characterizing three-dimensional drought events and spatio-temporal migration patterns (3차원적 가뭄사상 특성 분석 및 시공간적 이동 패턴 분석)

  • Yoo, Jiyoung;Kim, Jang-Gyeong;Yoo, Do-Guen;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1025-1031
    • /
    • 2019
  • There are various research works on the spatio-temporal drought analysis because spatio-temporal behaviors of drought are essential for understanding the development and migration patterns of drought events. This study quantified three-dimensional drought events using the 6-month Standard Precipitation Index (SPI6). A total of 45 drought events were found during the analysis period, and the migration patterns of drought event in South Korea were analyzed using the centers of drought events. In South Korea, more droughts were migrated frequently in the north/south direction than in the east/west direction. In addition, droughts moving eastward have decreased since 2000, while droughts moving northward have been found to be longer. The results of spatio-temporal drought analysis may be highly utilized for understanding drought development and migration patterns.

Analyzing the drought event in 2015 through statistical drought frequency analysis (통계학적 가뭄빈도분석 기법을 통한 2015년 가뭄사상에 대한 분석)

  • Lee, Taesam;Son, Chanyoung
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.3
    • /
    • pp.177-186
    • /
    • 2016
  • Drought is a water-related natural disaster which can be simply described as spatially and temporally sequential absence of water. However, its characteristics are very difficult to define. For this reason, the preparation and mitigation from drought events have not been successful. In the current study, we illustrated a design drought estimation approach of water resources infrastructures as well as the existing theoretical one to prepare and mitigate drought disasters. Theoretical and simulation methods were tested including three time series models such as autoregressive (AR), Gamma AR, Copula AR models. The results indicated that for South Korea region, the simulation-based method to estimate drought frequency presented better performance and all the three time series models show similar performance to each other. The current drought event occurring in South Korea was investigated with dividing South Korea into four basins as Han River, Nakdong River, Geum River, and Nakdong River basins. The results showed that two middle and north basins presented significant drought events with 3 year drought duration and around 40 year return period while the other two southern regions illustrated relatively weaker drought events.

Drought evaluation using unstructured data: a case study for Boryeong area (비정형 데이터를 활용한 가뭄평가 - 보령지역을 중심으로 -)

  • Jung, Jinhong;Park, Dong-Hyeok;Ahn, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1203-1210
    • /
    • 2020
  • Drought is caused by a combination of various hydrological or meteorological factor, so it is difficult to accurately assess drought event, but various drought indices have been developed to interpret them quantitatively. However, the drought indexes currently being used are calculated from the lack of a single variable, which is a problem that does not accurately determine the drought event caused by complex causes. Shortage of a single variable may not be a drought, but it is judged to be a drought. On the other hand, research on developing indices using unstructured data, which is widely used in big data analysis, is being carried out in other fields and proven to be superior. Therefore, in this study, we intend to calculate the drought index by combining unstructured data (news data) with weather and hydrologic information (rainfall and dam inflow) that are being used for the existing drought index, and to evaluate the utilization of drought interpretation through verification of the calculated drought index. The Clayton Copula function was used to calculate the joint drought index, and the parameter estimation was used by the calibration method. The analysis showed that the drought index, which combines unstructured data, properly expresses the drought period compared to the existing drought index (SPI, SDI). In addition, ROC scores were calculated higher than existing drought indices, making them more useful in drought interpretation. The joint drought index calculated in this study is considered highly useful in that it complements the analytical limits of the existing single variable drought index and provides excellent utilization of the drought index using unstructured data.

Characteristics of drought-flood abrupt alternation events using SWAP index in the Han River basin (SWAP 지수를 활용한 한강유역의 가뭄-홍수 급변사상 특성 분석)

  • Son, Ho Jun;Lee, Jin-Young;Yoo, Jiyoung;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.925-932
    • /
    • 2021
  • A drought-flood abrupt alternation event is an overlapping extreme event that is harder to cope with than a single event of drought and flood. It is also expected to have a significant adverse impact on ecosystems as well as industries and agriculture. However, there has not yet been a comprehensive study that characterizes the drought-flood abrupt alternation events in Korea. Therefore, this study employed a standard weighted average precipitation (SWAP) index, which is efficient to analyze not only individual events of drought and flood but also the drought-flood abrupt alternation events considering various time scales. The SWAP standardized the weighted average precipitation (WAP) by adding temporal weights to the precipitation. The SWAP indices were calculated for middle-sized watersheds of the Han River basin using the area average precipitation during 1966 and 2018. The severity K was calculated to represent the relative regional severity considering normal rainfalls, and used to characterize the drought-flood abrupt alternation in the study areas. The results indicated that 20 of the 30 middle-sized watersheds in the Han River basin were confirmed to increase the severity of drought-flood abrupt alternation over time. Considering the frequency and severity of drought-flood abrupt alternation events in each watershed, vulnerable areas and dangerous areas due to drought-flood abrupt alternation were identified, for example, the Upstream Namhan River (#1001).