• Title/Summary/Keyword: Drought early warning in unserviced area

Search Result 2, Processing Time 0.015 seconds

Development of groundwater level monitoring and forecasting technique for drought analysis (I) - Groundwater drought monitoring using standardized groundwater level index (SGI) (가뭄 분석을 위한 지하수위 모니터링 및 예측기법 개발(I) - 표준지하수지수(SGI)를 이용한 지하수 가뭄 모니터링)

  • Lee, Jeongju;Kang, Shinuk;Jeong, Jihye;Chun, Gunil
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.1011-1020
    • /
    • 2018
  • This study aims to develop a drought monitoring scheme based on groundwater which can be exploit for water supply under drought stress. In this context, groundwater level can be used as a proxy for better understanding the temporal evolution of drought state. First, kernel density estimator is presented in the monthly groundwater level over the entire national groundwater stations. The estimated cumulative distribution function is then utilized to map the monthly groundwater level into the standardized groundwater level index (SGI). The SGI for each station was eventually converted into the index for major cities through the Thiessen polygon approach. We provide a drought classification for a given SGI to better characterize the degree of drought condition. Ultimately, we conclude that the proposed monitoring framework enables a more reliable estimation of the drought stress, especially for a limited water supply area.

Development of groundwater level monitoring and forecasting technique for drought analysis (II) - Groundwater drought forecasting Using SPI, SGI and ANN (가뭄 분석을 위한 지하수위 모니터링 및 예측기법 개발(II) - 표준강수지수, 표준지하수지수 및 인공신경망을 이용한 지하수 가뭄 예측)

  • Lee, Jeongju;Kang, Shinuk;Kim, Taeho;Chun, Gunil
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.1021-1029
    • /
    • 2018
  • A primary objective of this study is to develop a drought forecasting technique based on groundwater which can be exploit for water supply under drought stress. For this purpose, we explored the lagged relationships between regionalized SGI (standardized groundwater level index) and SPI (standardized precipitation index) in view of the drought propagation. A regional prediction model was constructed using a NARX (nonlinear autoregressive exogenous) artificial neural network model which can effectively capture nonlinear relationships with the lagged independent variable. During the training phase, model performance in terms of correlation coefficient was found to be satisfactory with the correlation coefficient over 0.7. Moreover, the model performance was described by root mean squared error (RMSE). It can be concluded that the proposed approach is able to provide a reliable SGI forecasts along with rainfall forecasts provided by the Korea Meteorological Administration.