• Title/Summary/Keyword: Drought Tolerance

Search Result 243, Processing Time 0.039 seconds

Overexpression of a Pathogenesis-Related Protein 10 Enhances Biotic and Abiotic Stress Tolerance in Rice

  • Wu, Jingni;Kim, Sang Gon;Kang, Kyu Young;Kim, Ju-Gon;Park, Sang-Ryeol;Gupta, Ravi;Kim, Yong Hwan;Wang, Yiming;Kim, Sun Tae
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.552-562
    • /
    • 2016
  • Pathogenesis-related proteins play multiple roles in plant development and biotic and abiotic stress tolerance. Here, we characterize a rice defense related gene named "jasmonic acid inducible pathogenesis-related class 10" (JIOsPR10) to gain an insight into its functional properties. Semi-quantitative RT-PCR analysis showed up-regulation of JIOsPR10 under salt and drought stress conditions. Constitutive over-expression JIOsPR10 in rice promoted shoot and root development in transgenic plants, however, their productivity was unaltered. Further experiments exhibited that the transgenic plants showed reduced susceptibility to rice blast fungus, and enhanced salt and drought stress tolerance as compared to the wild type. A comparative proteomic profiling of wild type and transgenic plants showed that overexpression of JIOsPR10 led to the differential modulation of several proteins mainly related with oxidative stresses, carbohydrate metabolism, and plant defense. Taken together, our findings suggest that JIOsPR10 plays important roles in biotic and abiotic stresses tolerance probably by activation of stress related proteins.

Transformation of Artemisia adamsii, Endemic to a Gobi Desert, with CLP, Dhn5 to Enhance Environmental Stress Tolerance (CLP, Dhn5 유전자의 도입에 의한 고비사막 자생식물 Artemisia adamsii의 내건성 및 내동성 증진)

  • Han, Kyu-Hyun;Hwang, Cheol-Ho
    • Journal of Plant Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.315-321
    • /
    • 2003
  • Freezing and drought tolerances in plants are very important for survival in the desert. In an effort to reduce desertifcation in Gobi, a molecular breeding of Artemisia adamsii using the CLP (chitinase like protein, antifreeze protein) and Dhn5 (dehydrin5) genes from barley is performed by introducing them into Artemisia adamsii via Agrobacteria. We had found an optimal combinatorial concentration of hormones at 0.05mg/L of NAA and 0.5mg/L of BA for growth of callus in Artemisia adamsii. In addition, the higher rate of callus induction using hypocotyl as explant was observed comparing to explants of stem and leaf. There were some variations in the level of the proteins expressed among the transgenic lines such that the lines of CLP(CS1-5, 1-7,4-4) and Dhn5(DS2-2, 2-3) lines produce the protein to higher levels. The transgenic lines showing a higher level of Dhn5 exhibited better growth than nontransgenic callus in presence of 10 and 20% PEG. In case of the CLP tansgenic lines, both CS1-5 and CS1-7 showed a higher level of freezing tolerance determined by ion leakage test.