• Title/Summary/Keyword: Droplets

Search Result 1,442, Processing Time 0.031 seconds

Solidification of Hot-Dip Galvanized Layer by Electrostatically Charged Aerosol Particles (정전 대전된 액적에 의한 용융 아연 도금층의 응고 방법)

  • 김상헌;김형민;정원철;정원섭
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.4
    • /
    • pp.233-240
    • /
    • 2000
  • A novel electrostatic spraying method to solidify molten zinc coating layer was studied by SEM and measurement of sample's temperature. The sprayed droplets also served as nucleation sites in the solidification reaction of molten zinc but might leave the pitting mark by impinging on its surface especially at high spray pressure. Our experimental results showed that electric field could change the sprayed particle trajectories and assist the fine droplets to attach on the surface. Thus, by reducing the spray pressure and by applying the electric voltage higher than -20 KV to charge the droplets electrostatically, we could produce the spangle free galvanized coating layer without pitting.

  • PDF

Coalescence of Two Oppositely Charged Droplets at Constant Electric Potential

  • Lee, Dong Woog;Kang, In Seok
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.247-253
    • /
    • 2021
  • Electrocoalescence is an active technique in petroleum industry, formation of raindrop in cloud, and digital microfluidics. In the present work, electrocoalescence of two droplets under the constant electric potential in air was studied. Through this experiment, we found that the electrocoalescence process could be divided three phases; deformation, formation of liquid bridge, and merging. And the condition for formation of liquid bridge between two droplets was obtained. For the connection of experimental result in constant potential condition with general case in constant charge condition, relationship of charge and potential difference was deduced by numerical computation. In high electric potential case, flat interfaces after recoiling were observed. It was interpreted through a numerical simulation of electric field.

VISUALIZATION AND MEASUREMENT OF A NARROW-CONE DI GASOLINE SPRAY FOR THE IMPINGEMENT ANALYSIS

  • Park, J.S.;Im, K.S.;Kim, H.S.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.221-238
    • /
    • 2004
  • Wall interactions of direct injection spray were investigated using laser-sheet imaging, shadowgraphy, wetted footprint and phase Doppler interferometry techniques. A narrow-cone high-pressure swirl injector is used to inject iso-octane fuel onto a plate, which has three different impact angles inside a pressurized chamber. Heated air and plate conditions were compared with unheated cases. Injection interval was also varied in the heated case to compare dry- and wet- wall impingement behaviors. High-speed macroscopic Mie-scattering images showed that presence of wall and air temperature has only minor effect on the bulk spray structure and penetration speed for the narrow-cone injector tested. The overall bulk motions of the spray plume and its spatial position at a given time are basically unaffected until a few millimeters before impacting the wall. The surface properties of the impact surface, such as the temperature, the presence of a preexisting liquid film also have a small effect on the amount of wetting or the wetted footprint; however, they have strong influence on what occurs just after impact or after a film is formed. The shadowgraph in particular shows that the plate temperature has a significant effect on vapor phase propagation. Generally, 10-20% faster horizontal vapor phase propagation is observed along the wall at elevated temperature condition. For impingement onto a preexisting film, more splash and evaporation were also observed. Contrary to some preconceptions, there is no significant splashing and droplet rebounding from surfaces that are interposed in the path of the DI gasoline spray, especially for the oblique impact angle cases. There also appears to be a dense spray front consists of large sac spray droplets in the oblique impact angle cases. The bulk of the spray is not impacted on the surface, but rather is deflected by it The microscopic details as depicted by phase Doppler measurements show that the outcome of the droplet impaction events can be significantly influenced. Only droplets at the spray front have high enough Weber numbers for wall impact to wet, splash or rebound. Using the sign of vertical velocity, the time-resolved downward droplets and upward droplets are compared. The Weber number of upward moving droplets, which seldom exceeds unity, also decreases as the impact angle decreases, as the droplets tend to impact less and move along the wall in the deflected spray plume.

Numerical Study on the Droplet Vaporization Characteristics of Dimethyl Ether(DME) Droplet (DME 액적의 증발특성 해석)

  • 유용욱;류종혁;김용모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.69-75
    • /
    • 2004
  • The present study is numerically investigated for the high pressure effects on the vaporization process of the DME droplet. The evaporation rate of DME droplets is about twice that of dodecane droplets at the same chamber condition. The DM droplet vaporization characteristics is parametrically studied for the wide range of the operating conditions encountered with the high pressure combustion process.

Numerical Simulation of Transient Laminar Reacting Flows Around Fuel Droplets (연료액적 주변의 비정상 층류 화염장 해석)

  • You S. W.;Kang S. M.;Kim T. J.;Kim Y. M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.78-85
    • /
    • 2000
  • The transient laminar reacting flows around fuel droplet have been numerically analyzed. The physical models used in this study can account for the variable thermophysical properties and the chemistry is represent by the one-step global reaction model. The present study is focused on the vaporization and ignition characteristics, flame structure including wake flame, transition flame and envelope flame, and interaction between droplets. special emphasis is given to the triple flame structure and flame stabilization.

  • PDF

Effect of Supplements Added into the Maturation Medium on Lipid Droplets Formation and In Vitro Development of Immature Porcine Oocytes.

  • Park, In-Kyoung;Song, Hai-Bum
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.242-242
    • /
    • 2004
  • This study was conducted to investigate the effects of various supplements added into maturation medium of immature porcine oocytes on quantity of cytoplasmic lipid droplets(LD), subsequent fertilization and development to the blastocyst stage in vitro. The basic maturation medium was TCM 199 + 1 ㎍/㎖ FSH, 0.57 mM cystein, 10 ng/㎖ EGF and was supplemented various supplements(10% FBS, 10% pFF, 0.4% BSA, 1.0% BSA, 0.4% PVP, 1.0% PVP). (omitted)

  • PDF

Experiments and analysis of droplet formation influenced by driving waveform (구동파형에 따른 잉크액적 형성 실험 및 해석)

  • Shin, Dong-Youn
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.26-29
    • /
    • 2008
  • In the fields of electronics and displays where inkjet printing has demonstrated its capability to fabricate colorant subpixels of thin film transistor liquid crystal(TFT LCD) color filters and organic light emitting diode (OLED) displays, conducting tracks and TFTs, the production of satellite droplets is one of primary things to eliminate because they generally deteriorate the pattern quality. To understand the production mechanism of satellite droplets in this paper, driving waveforms such as monopolar and bipolar were employed and the influence of the pulse duration time were investigated in both experimental and numerical aspects.

  • PDF

A Model for Water Droplet using Metaball in the Gravitation Force (메타볼을 이용한 중력장내의 물방울 모델)

  • Yu, Young Jung;Jeong, Ho Youl;Cho, Hwan Gyu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.4 no.1
    • /
    • pp.79-88
    • /
    • 1998
  • Till now there are several rendering models for water and simulating other fluids and their dynamics. Especially in order to generate a curved surface of flexible objects such as liquid and snow, the implicit metaball formulation is widely used in favor of its simplicity and flexibility. This paper proposes one excellent method for generating water droplets, which would be deformed in gravitation field. In previous works, a water droplet was simply represented by approximated curved surfaces of a symmetric metaball. Thus the final result of the rendered water droplet was far from a realistic droplet, because they do not consider the gravitational effect in droplets. We propose a new metaball model for rendering water droplets placed on an arbitrary surface considering the gravitation and friction between droplet and plate. Our new metaball model uses a new vector field isosurface function to control the basic scalar metaball with respect to the norm of gravitational force. In several experiments, we could render a photo-realistic water droplets with natural-looking shadows by applying ray-tracing.

  • PDF

Development and Performance Evaluation of a Liquid Particle Generator (액적 발생 장치 개발 및 성능 평가)

  • Heo, Jung-Hyuk;Kim, Dae-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4334-4340
    • /
    • 2012
  • In this work, we developed and evaluated the Liquid Particle Generator for generating fine particles in the air. The Liquid Particle Generator, which was based on the spray-evaporation method, had two kinds of orifices: 0.3 mm and 0.5 mm. The Liquid Particle Generator was operated at different pressure between 1 bar and 4 bars to find relationship between input pressure and droplet output rate. In addition, the size distribution of the droplets generated by the Liquid Particle Generator with different orifices was measured by the SMPS system and the optical particle counter. As a result, it was shown that the Liquid Particle Generator with 0.3 mm orifice generated droplets of around 0.3 ${\mu}m$ and atomized particles very stably. The Liquid Particle Generator having 0.5 mm orifice generated bigger droplets, compared with the Liquid Particle Generator with 0.3 mm orifice. Additionally, in these Liquid Particle Generators (0.3 mm and 0.5 mm orifice), little coagulation of particles did occur because of fine droplets atomized by the jet. Therefore, the Liquid Particle Generator could be used as an aerosol generator for atomizing fine particles.

Magnetic Sensor-Based Detection of Picoliter Volumes of Magnetic Nanoparticle Droplets in a Microfluidic Chip

  • Jeong, Ilgyo;Eu, Young-Jae;Kim, Kun Woo;Hu, XingHao;Sinha, Brajalal;Kim, CheolGi
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.302-307
    • /
    • 2012
  • We have designed, fabricated and tested an integrated microfluidic chip with a Planar Hall Effect (PHE) sensor. The sensor was constructed by sequentially sputtering Ta/NiFe/Cu/NiFe/IrMn/Ta onto glass. The microfluidic channel was fabricated with poly(dimethylsiloxane) (PDMS) using soft lithography. Magnetic nanoparticles suspended in hexadecane were used as ferrofluid, of which the saturation magnetisation was 3.4 emu/cc. Droplets of ferrofluid were generated in a T-junction of a microfluidic channel after hydrophilic modification of the PDMS. The size and interval of the droplets were regulated by pressure on the ferrofluid channel inlet. The PHE sensor detected the flowing droplets of ferrofluid, as expected from simulation results. The shape of the signal was dependent on both the distance of the magnetic droplet from the sensor and the droplet length. The sensor was able to detect a magnetic moment of $2{\times}10^{-10}$ emu at a distance of 10 ${\mu}m$. This study provides an enhanced understanding of the magnetic parameters of ferrofluid in a microfluidic channel using a PHE sensor and will be used for a sample inlet module inside of integrated magnetic lab-on-a-chip systems for the analysis of biomolecules.