• Title/Summary/Keyword: Droplet temperature

Search Result 377, Processing Time 0.024 seconds

Effects of Droplet Temperature on Heat Transfer During Collision on a Heated Wall Above the Leidenfrost Temperature (Leidenfrost 온도 이상의 가열 벽면과 충돌 시 열전달에 대한 액적 온도의 영향)

  • Park, Junseok;Kim, Hyungdae
    • Journal of ILASS-Korea
    • /
    • v.21 no.2
    • /
    • pp.78-87
    • /
    • 2016
  • This study experimentally investigated the effects of droplet temperature on the heat transfer characteristics during collision of a single droplet on a heated wall above the Leidenfrost temperature. Experiments were performed by varying temperature from 40 to $100^{\circ}C$ while the collision velocity and wall temperature were maintained constant at 0.7 m/s at $500^{\circ}C$, respectively. Evolution of temperature distribution at the droplet-wall interface as well as collision dynamics of the droplet were simultaneously recorded using synchronized high-speed video and infrared cameras. The local heat flux distribution at the collision surface was deduced using the measured temperature distribution data. Various physical parameters, including residence time, local heat flux distribution, heat transfer rate, heat transfer effectiveness and vapor film thickness, were measured from the visualization data. The results showed that increase in droplet temperature reduces the residence time and increases the vapor film thickness. This ultimately results in reduction in the total heat transfer by conduction through the vapor film during droplet-wall collision.

Characteristics of Heptane Droplet Vaporization in High-Pressure and Temperature Flow Field (고온 고압 유동장에서 햅탄 액적의 기화 특성)

  • Ko, Jung-Bin;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.83-89
    • /
    • 2004
  • Vaporization characteristics of a liquid heptane droplet in high-pressure and temperature flow field are numerically studied. Variable thermodynamic and transport properties and high-pressure effects are taken into account in order to consider real gas effects. Droplet Vaporization in convective environments was investigated on the basis of droplet vaporization in quiescent and convective environment. In quiescent environments, droplet lifetime is directly proportional to pressure at the subcritical temperature range but it is inversely proportional to pressure at the supercritical temperature range. In convective environment, droplet deformation becomes stronger by increasing Reynolds number due to increase of velocity while droplet deformation is relatively weak at a higher pressure for the same Reynolds number cases.

  • PDF

Analysis of Temperature Distribution and Residual Stress in Deposition Process of Metal Droplet by Using Laser Beam (레이저를 이용한 금속액적 적층시 온도분포와 잔류응력 해석)

  • Yun Jin-Oh;Yang Young-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.187-193
    • /
    • 2005
  • The temperature distribution of the deposited droplet was predicted by using the finite element analysis and it was assumed that the droplet was axisymmetrical model. The analysis of residual stress was performed with the temperature data, which is obtained from the result. Axisymmetric droplet is deposited three times to consider the actual phenomenon of droplet deposition. The analysis of the temperature distribution is respectively performed whenever the axisymmetric droplet is laminated and the residual stresses of the laminated axisymmetric droplet are calculated with the value of the temperature distribution.

Investigation on Behavior of HAN-based Propellant Droplet at High Temperature (고온에서 HAN 계열 추진제 액적의 거동에 대한 연구)

  • Hwang, Chang Hwan;Baek, Seung Wook;Han, Cho Young;Kim, Su Kyum;Jeon, Hyung Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.329-332
    • /
    • 2012
  • The droplet behavior of 83.9 wt.% HAN water solution was investigated experimentally with various ambient temperature and nitrogen environment. At the initial stage of evaporation under thermal decomposition temperature of HAN, gradual decreasing of droplet diameter was observed. After that, the droplet started to expand due to the internal pressure build up by water nucleation inside the droplet. The micro explosion was observed at higher temperature than the decomposition temperature of HAN and the remaining droplet showed similar behavior of single composition droplet. The decreasing rate was augmented as the ambient temperature increasing.

  • PDF

An Experimental Study of Breakup of Impinging Droplets on a Hot Surface (표면 충돌 액적의 분열에 관한 실험적 연구)

  • Ko, Y.S.;Chung, S.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.85-92
    • /
    • 1994
  • Characteristics of breakup of a liquid droplet impinging on a hot surface has been investigated experimentally by using decane fuel. Factors influencing droplet breakup are surface temperature, impinging velocity, droplet diameter and incident angle. Droplets impinging on a hot surface begins to breakup at $220{\sim}235^{\circ}C$. This temperature varies with impinging Velocity, droplet diameter and incident angle. For wall temperature of $220{\sim}245^{\circ}C$ and above $270^{\circ}C$, breakup probability increases as impinging velocity increases showing S shape curve. For $245{\sim}265^{\circ}C$, a local minimum heat transfer rate occurs. In this temperature range, breakup probability shows nonmonotonous behavior as functions of impinging velocity. As droplet diameter decreases, impinging velocity required for droplet breakup increases. An optimum impinging angle for droplet breakup exists which are found to be about $75^{\circ}$.

  • PDF

A Study on the Characteristics of Soot Formation and Oxidation in Free Fuel Droplet Array

  • Lee, Myung-Jun;Kim, Jong-Youl;Yeom, Jeong-Kuk;Ha, Jong-Yul;Chung, Sung-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.851-860
    • /
    • 2002
  • In this study, it was attempted to obtain the fundamental data for the formation and oxidation of soot from a diesel engine. Combustion of spray injected into a cylinder is complex phenomenon having physical and chemical processes, and these processes affect each other. There are many factors in the mechanism of the formation and oxidization of soot and it is necessary to observe spray combustion microscopically. In order to observe with that view, free fuel droplet array was used as an experimental object and the droplet array was injected into an atmospheric combustion chamber with high temperature. Ambient temperature of the combustion chamber, interdroplet spacing, and droplet diameter were selected as parameters, which affect the formation and oxidation of soot. In this study, it was found that the parameters also affect ignition delay of droplet. The ambient temperature especially affected the ignition delay of droplet as well as the flame temperature after self-ignition. As the interdroplet spacing that means the local equivalence ratio in a combustion chamber was narrow, formation of soot was increased. As diameter of droplet was large, surface area of the droplet was also broad, and hence evaporation of the droplet was more active than that of a droplet with relative small diameter.

A numerical study on the vaporization of a droplet considering internal circulating flow in the presence of an oscillating flow (진동하는 유동장하에서 내부 순환 유동을 고려한 액적의 증발에 관한 수치적 연구)

  • Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1700-1716
    • /
    • 1996
  • The two-dimensional, unsteady, laminar conservation equations for mass, momentum, energy and species transport in the gas phase and mass, momentum and energy in the liquid phase are solved simultaneously in spherical coordinates in order to study heating and vaporization of a droplet entrained in the oscillating flow. The numerical solution gives the velocity and temperature distribution in both gas and liquid phase as a function of time. When the gas flow oscillates around an vaporizing droplet, the liquid flow circulates in the clockwise or counterclockwise direction and the temperature distribution in the liquid phase changes its shapes, depending on the gas fow direction. When the gas flow changes its direction of circulating liquid flow is opposite to the gas flow, forming two vortex circulating in the opposite direction. During the heating period, the difference in the maximum and minimum temperature is large, followed by the almost uniform temperature slightly below the boiling temperature. The mass and heat transfer from the droplet depend on the droplet temperature, droplet diameter and the magnitude of relative velocity, giving the droplet lifetime different from the d$^{2}$-law.

Characteristics for Nanofluid Droplet Evaporation on Heated Surface at Boiling Temperature of Base Liquid (비등점의 가열 표면에서 나노유체 액적의 증발 특성)

  • Kim, Dae Yun;Jung, Jung-Yeul;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.236-240
    • /
    • 2015
  • This study aims to experimentally investigate the evaporation characteristics of nanofluid droplet on heated surface at boiling temperature of DI-water. In particular, textured surface was used to examine the effect of wettability on evaporation. At the initial stage of evaporation process, dynamic contact angle (DCA) of nanofluid droplet with 0.01 vol.% concentration on textured surface rapidly increased over its equilibrium contact angle by generated large bubble inside the droplet due to lower wettability. However, contact angle of nanofluid droplet with higher concentration on textured surface decreased with surface tension. In addition, total evaporation time of droplet on textured surface was considerably delayed due to reduction of contact area between droplet and solid surface. Thus, evaporation characteristics were highly affected by the nanofluid concentration and surface wettability.

Experimental Study on Evaporation and Combustion Characteristics of Fuel Droplet with Carbon Nano-particle in RCM (급속압축장치에서 탄소 나노입자가 첨가된 연료 액적의 증발 및 연소 특성에 관한 실험적 연구)

  • Ahn, Hyeongjin;Won, Jonghan;Beak, Seungwook;Kim, Hyemin
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.209-211
    • /
    • 2015
  • Evaporation characteristics of a single droplet of carbon nanofluids were investigated in a rapid compression machine(RCM). n-Heptane and carbon black N990 were used to synthesize the carbon nanofluids. RCM is an experimental set-up to simulate a single compression stroke of reciprocating engine. Temperature and pressure in a reaction chamber were measured during the compression stroke. After the piston reaches top dead center(TDC), temperature and pressure decreased due to the heat loss at wall. In that process, a single droplet of carbon nanofluids underwent unsteady condition. A single droplet was put at the center of reaction chamber. Thermocouple whose tip is $50{\mu}m$ was used not only to measure transient bulk temperature, but also to suspend the droplet. The picture of single droplet was taken using high speed camera with a frame rate of 500 fps. From those pictures, the droplet diameter was measured by visual basic program.

  • PDF