• Title/Summary/Keyword: Droplet flow rate

Search Result 154, Processing Time 0.024 seconds

The Water Curtain Installation Guideline for Fire Spread Prevention in Market (재래시장의 화재확산 방지를 위한 수막설비 설치 지침)

  • Choi, Jung-Uk;Cho, Sung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.7
    • /
    • pp.269-274
    • /
    • 2016
  • This paper aims to suggest the water curtain installation guideline for prevention of fire spread. The water curtain systems play a role in preventing fire spread which is caused by fire flames and radiation heat release from a fire source. The radiation attenuation ratio is affected by the water droplet size, vertical distance from the nozzle and flow rate. This study suggests the water curtain installation guideline as follows : (1) Investigation of a reference store array (2) Calculation of the number of drencher heads (3) Review of the relationship between droplet size and attenuation factor depending on the height of the drencher head (4) Review of a drencher head array and spray overlapping. The reference traditional market in which a fire compartment is installed using a water curtain can be predicted to have a radiation attenuation ratio of 50%.

Experimental Study on Coffee-ring Effect of Silver Nanowire with Different Parameters (은 나노와이어 특성에 따른 커피 링 현상에 대한 실험적 연구)

  • Kang, Giho;Wang, Xiaofeng;Seong, Baekhoon;Lee, Hyungdong;Byun, Doyoung
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.2
    • /
    • pp.16-20
    • /
    • 2017
  • A coffee-ring effect is from capillary flow by different evaporation rate across the droplet. The capillary flow tends particles to accumulate at the edges of the droplet and makes the ring-shaped stain pattern. These coffee-ring formation and suppression of coffee-ring have been a critical role in printing and coating technologies. In this study, we present the experimental study on coffee-ring effect of silver nanowire inside the evaporating sessile droplet. Size and concentration effect of nanowires at coffee-ring effect has been investigated. From the coffee-ring, we observed the regimes of connected rings and disconnected ones and measure the resistivity of single ring pattern with different nanowire length.

LINEAR INSTABILITY ANALYSIS OF A WATER SHEET TRAILING FROM A WET SPACER GRID IN A ROD BUNDLE

  • Kang, Han-Ok;Cheung, Fan-Bill
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.895-910
    • /
    • 2013
  • The reflood test data from the rod bundle heat transfer (RBHT) test facility showed that the grids in the upper portion of the rod bundle could become wet well before the arrival of the quench front and that the sizes of liquid droplets downstream of a wet grid could not be predicted by the droplet breakup models for a dry grid. To investigate the water droplet generation from a wet grid spacer, a viscous linear temporal instability model of the water sheet issuing from the trailing edge of the grid with the surrounding steam up-flow is developed in this study. The Orr-Sommerfeld equations along with appropriate boundary conditions for the flow are solved using Chebyshev series expansions and the Tau-Galerkin projection method. The effects of several physical parameters on the water sheet oscillation are studied by determining the variation of the temporal growth rate with the wavenumber. It is found that a larger relative steam velocity to water velocity has a tendency to destabilize the water sheet with increased dynamic pressure. On the other hand, a larger ratio of steam boundary layer to the half water sheet thickness has a stabilizing effect on the water sheet oscillation. Droplet diameters downstream of the spacer grid predicted by the present model are found to compare reasonably well with the data obtained at the RBHT test facility as well as with other data recently reported in the literature.

Study on Film Boiling Heat Transfer of Spray Cooling in Dilute Spray Region (희박 분무영역에서의 분무냉각 막 비등 열전달에 관한 연구)

  • Kim Yeung Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.279-286
    • /
    • 2005
  • This study presents experimental results on the heat transfer coefficients in the film boiling region of spray cooling for actual metallurgical process. In this study, the heat flux distributions of a two dimensional dilute spray impinging on a hot plate were experimentally investigated. A stainless steel block was cooled down from intial temperature of about $800^{\circ}C$ by twin fluid (air-water) flat spray. It was found from the experimental results that the heat transfer area was classified into the stagnation region and wall-flow region. In the stagnation region, the experimental data of local heat transfer coefficient was closely correlated with the local droplet-flow-rate supplied from the spray nozzle directly. Thus, the local heat transfer coefficients are in good agreement with the predicted values from the correlations proposed by our previous study. In wall-flow region, however, remarkable differences are observed between experimental data and predicted values because the number of rebound droplets increase with increasing the distance from the stagnation point.

Polymer Films with Electrospray Deposition, model and experiment

  • Rietveld Ivo B.;Kobayashi Kei;Yamada Hirofumi;Matsushige Kazumi
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.284-284
    • /
    • 2006
  • Electrospray deposited films of poly(vinylidene fluoride) were prepared with various conditions. A model has been developed, which provides the state of the electrosprayed droplet at impact. With a combination of the experimental films and the model calculations, it can be shown that growth rate, the increase of the sprayed solution on the substrate per second, defines the film morphology in electrospray deposition. Growth rate indicates which factors play the main role in the film formation process. The most important factors are liquid flow, surface tension and shear rate. The model can calculate the shear rate and it is shown that PVDF, and most likely polymers in general, has a large range of growth rates, where the morphology only depends on the shear rate of the depositing droplet. This method can also be used to describe electrospray deposition of other compounds.

  • PDF

Effects of Micro-fin Structure on Spray Cooling Heat Transfer in Forced Convection and Nucleate Boiling Region (강제대류 및 핵비등영역에 있어서 마이크로 휜 형상이 분무냉각 열전달에 미치는 영향)

  • Kim, Yeung-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.983-990
    • /
    • 2010
  • In the present study, spray cooling heat transfer was experimentally investigated for the case in which water is sprayed onto the surfaces of micro-fins in forced convection and nucleate boiling regions. The experimental results show that an increase in the droplet flow rate improves heat transfer due to forced convection and nucleate boiling in the both case of smooth surface and surfaces of micro-fins. However, the effect of subcooling for fixed droplet flow rate is very weak. Micro-fins surfaces enhance the spray cooling heat transfer significantly. In the dilute spray region, the micro-fin structure has a significant effect on the spray cooling heat transfer. However, this effect is weak in the dense spray region. A previously determined correlation between the Nusselt number and Reynolds number shows good agreement with the present experimental data for a smooth surface.

The study on the estimation of heat transfer coefficient through the counterflow concentric tube using refrigerant and moisture air (냉매와 습공기가 교차하는 2중관에서 전열계수 예측을 위한 연구)

  • 조권희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.687-694
    • /
    • 1999
  • This study was conducted to develop new drying process for automatic control and marine engi-neering system. Air-water tests were carried out to investigate dryer performance. The dispersed flow in he dryer test apparatuses was also simulated by using a numerical code which solves the Dittus-Boelter equation for continuous liquid phase and the Reynolds equation of droplet motion for continuous liquid phase and the Reynolds equation of droplet motion for dispersed phase to predict droplet removal efficiency. Proper conditions for dehumidification were optimized by response ambient conditions. When the selected indexes were constrained in the range of 85-98% moisture content above $15^{\circ}$ and more than mass flow rates of moist air 750kg/h. The numerical results were compared with the experimental data pertaining to the removal effi-ciency at chamber stage and overall pressure drop along concentric tubes Good agreement was obtained as for the efficiency while relatively poor agreement was obtained for the relative humidity. The results also showed that the efficiency depended strongly on the relative humidity at the inlet condition which indicated the importance of estimating the heat exchanger length. Effects of some design parameters in both removal efficiency and breakthrough onset condition are discussed.

  • PDF

Characteristics of SMD and Volume Flux of Two-phase Jet Injected into Cross-flow with Various Gas-liquid Ratio and Reynolds Number (횡단 유동장의 기액비 및 레이놀즈수 변화에 따른 외부혼합형 이상유체 제트의 액적크기 및 체적유속 특성)

  • Kim, Jong-Hyun;Lee, Bong-Soo;Koo, Ja-Ye
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.75-81
    • /
    • 2009
  • A study was performed to investigate the characteristics of two-phase jet injected into subsonic cross-flow using the external mixed gas blast two-phase nozzle. The shadowgraph method was adopted for the cross-flow jet visualization and PDPA system was used to measure droplet size, velocity, and volume flux. The atomization of two-phase jet is initially determined according to gas to liquid mass flow-rate ratio and the Reynolds number of cross-flows. The highest penetration trajectories of two-phase jet injected into cross-flow are governed by the momentum ratio at subsonic cross-flow. As GLR of two-phase jet injected into cross-flow increases, the droplet size decreases and the distribution area of volume flux increases. The distribution of volume flux that influenced by the counter vortex pair at the downstream of cross-flow is symmetric in shape of horseshoe.

An Experimental Study on the Effect of Electrohydrodynamic Monodisperse Atomization According to Nozzle Characteristics (노즐 특성에 따른 전기수력학적 단분산 미립화 효과에 관한 실험적 연구)

  • Sung, K.A.;Lee, C.S.
    • Journal of ILASS-Korea
    • /
    • v.10 no.2
    • /
    • pp.18-31
    • /
    • 2005
  • This study was performed to explore the liquid breakup and atomization characteristics for the classification of drop formation mode and background of uniform droplets generation in electrohydrodynmaic atomization according to the change of experimental parameters such as nozzle material (stainless steel. teflon). fluid flow rate, applied electrical field and intensity, and frequency. In results, from the classification map of drop formation modes according to the variation of applied AC voltage and frequency at a stainless nozzle, the droplet size was smaller than the outer diameter of the nozzle tip relatively in the spindle mode. The transition points became clearly to be moved toward the high applied voltage by rising the applied AC frequency beyond 450Hz. Also the droplet radius can be observed quite small in the frequency bandwidth of $350{\sim}450Hz$. The droplet radiuses decrease as the applied voltage increases for a fixed applied AC frequency within the range from 50Hz to 400Hz Over 400Hz, the relation between the power intensity and the droplet size was not consistent with a continuous mechanism of liquid breakup. Thus, it is showed that the droplet size distribution using the teflon nozzle was analogous to the results of stainless steel, but the droplet size was bigger than that of stainless steel relatively in case of a teflon nozzle.

  • PDF

The Characteristics of Silica Powders Prepared by Spray Pyrolysis Applying Droplet Classification Apparatus (액적 분급 장치를 적용한 분무열분해 공정으로부터 합성된 실리카 분말의 특성)

  • Kang, Yun-Chan;Ju, Seo-Hee;Koo, Hye-Young;Kang, Hee-Sang;Park, Seung-Bin
    • Korean Journal of Materials Research
    • /
    • v.16 no.10
    • /
    • pp.633-638
    • /
    • 2006
  • Silica powders with spherical shape and narrow size distribution were prepared by large-scale ultrasonic spray pyrolysis applying the droplet classification apparatus. On the other hand, silica powders prepared by large-scale ultrasonic spray pyrolysis without droplet classification apparatus had broad size distribution. Droplet classification apparatus used in this paper applied the principles of cyclone and dispersion plate with small holes. The droplets formed from the ultrasonic spray generator applying the droplet classification apparatus had narrow size distribution. The droplets with fine and large sizes were eliminated by droplet classification apparatus. The optimum flow rate of the carrier gas and diameter of the hole of the dispersion plate were studied to reduce the size distribution of the silica powders prepared by large-scale ultrasonic spray pyrolysis. The size distribution of the silica powders prepared by large-scale ultrasonic spray pyrolysis at the optimum preparation conditions was 0.76.