• Title/Summary/Keyword: Droplet diameter

Search Result 391, Processing Time 0.024 seconds

The Analysis of Two-phase Flow in a Lean Direct Injection Gas-turbine Combustor (희박연료 직접분사(Lean Direct Injection) 가스터빈 연소기의 이상유동 분석)

  • Lee, Kyobin;Kim, Jong-Chan;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.204-211
    • /
    • 2019
  • The analysis on two-phase flow in a Lean Direct Injection(LDI) combustor has been investigated. Linearized Instability Sheet Atomization(LISA) and Aerodynamically Progressed Taylor Analogy Breakup(APTAB) breakup models are applied to simulate the droplet breakup process in hollow-cone spray. Breakup model is validated by comparing penetration length and Sauter Mean Diameter(SMD) of the experiment and simulation. In the LDI combustor, Precessing Vortex Core(PVC) is developed by swirling flow and most droplets are atomized along the PVC. It has been confirmed that all droplets have Stokes number less than 1.0.

Performance Analysis of Liquid Pintle Thruster Using Quasi-one-dimensional Multi-phase Reaction Flow: Part II. Thruster Performance Characteristics (준 일차원 다상 반응유동 기법을 이용한 케로신/과산화수소 액체 핀틀 추력기 성능해석 연구: Part II 추력기 성능 특성)

  • Kang, Jeongseok;Bok, Janghan;Sung, Hong-Gye;Kwon, Minchan;Heo, JunYoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.78-84
    • /
    • 2020
  • The performance of pintle thruster is analyzed by using the pintle thruster performance analysis model which integrating the element models introduced in Part I. To verify the performance analysis, the results of the developed program are compared with the experimental data of kerosene/hydrogen peroxide liquid pintle thrusters. Based on the results, the characteristics of the pintle thruster are analyzed. The sensitivity analysis is performed to investigate the effect of thruster shape and operation parameters on performance characteristics using both OAT and scatter plot methods. The four performance parameters such as droplet diameter, film flow rate, O/F ratio, and nozzle throat diameter are evaluated to investigate their effects on characteristic speed, combustor pressure, and specific thrust.

Spray Structures and Vaporizing Characteristics of a GDI Fuel Spray

  • Park, Dong-Seok;Park, Gyung-Min;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.999-1008
    • /
    • 2002
  • The spray structures and distribution characteristics of liquid and vapor phases in non-evaporating and evaporating Gasoline Direct Injection (GDI) fuel sprays were investigated using Laser Induced Exciplex Fluorescence (LIEF) technique. Dopants were 2% fluorobenzene and 9% DEMA (diethyl-methyl-amine) in 89% solution of hexane by volume. In order to study internal structure of the spray, droplet size and velocity under non-evaporating condition were measured by Phase Doppler Anemometry (PDA). Liquid and vapor phases were visualized at different moments after the start of injection. Experimental results showed that the spray could be divided into two regions by the fluorescence intensity of liquid phase: cone and mixing regions. Moreover, vortex flow of vapor phase was found in the mixing region. About 5㎛ diameter droplets were mostly distributed in the vortex flow region. Higher concentration of vapor phase due to vaporization of these droplets was distributed in this region. Particularly, higher concentration of vapor phase and lower one were balanced within the measurement area at 2ms after the start of injection.

Characteristics of Internal Flow and Fuel Spray in a Fuel Nozzle Orifice (연료노즐의 내부유동 및 외부분무 특성)

  • Hong, S.T.;Park, J.H.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.76-84
    • /
    • 1996
  • The nozzle geometry and up-stream inject ion condition affect the characteristics of flow inside the nozzle. such as turbulence and cavitation bubbles. Flow details in fuel nozzle orifice with sudden contraction of cross sectional area have been investigated both experimentally and numerically. The measurements of velocities of internal flow in a scaled-up nozzle with different length to diameter rat io(L/d) were made by laser Doppler velocimetry in order to clarify the effect of internal flow on the characteristics of fuel spray. Mean and fluctuating velocities and discharge coefficients were obtained at various Reynolds numbers. The turbulent intensity and turbulence kinetic energy in a sharp inlet nozzle were higher than that in a round inlet nozzle. Calculations were also performed for the same nozzles as scaled-up experimental nozzles using the SIMPLE algorithm. External spray behavior under different nozzle geometry and up-stream flow conditions using Doppler technique and visualization technique were also observed.

  • PDF

A Review on the Mixture Formation and Atomization Characteristics of Oxygenated Biodiesel Fuel (바이오디젤 연료의 혼합기 형성 및 미립화 증진 방안)

  • Suh, Hyun Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.183-192
    • /
    • 2014
  • In this work, the mixture formation and atomization characteristics of biodiesel fuel were reviewed under various test conditions for the optimization of compression-ignition engine fueled with biodiesel. To achieve these, the effect of nozzle caviting flow, group-hole nozzle geometry and injection strategies on the injection rate, spray evolution and atomization characteristics of biodiesel were studied by using spray characteristics measuring system. At the same time, the fuel heating system was installed to obtain the effect of fuel temperature on the biodiesel fuel atomization. It was revealed that cavitation in the nozzle orifice promoted the atomization performance of biodiesel. The group-hole nozzle geometry and split injection strategies couldn't improve it, however, the different orifice angles which were diverged and converged angle of a group-hole nozzle enhanced the biodiesel atomization. It was also observed that the increase of fuel temperature induced the quick evaporation of biodiesel fuel droplet.

Preparation of Fluorescence Particles by Spray Pyrolysis (분무열분해법에의한 형광체 입자의 제조)

  • Kang, Yun-Chan;Jung, Kyeong-Youl;Park, Seung-Bin
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.235-242
    • /
    • 2006
  • Spray pyrosysis is a process to prepare particles and films by evaporating and decomposing droplets of precursor solutions in the order of 1-10 micrometer in diameter. Key elements of the spray pyrolysis process include precursor, solvent, droplet generator, and reactor. Various combination of these 4 elements produces wide range of particles and films. In general. the current status of the spray pyrolysis technology is not quite promising for commercial success. However, this process will be feasible to produce multicomponent functional materials of controlled morphology. In this paper, current status of the spray pyrolysis technology is introduced with the emphasis of production of fluorescence particles.

Evolutionary Feature of Spray Droplets Exiting from a Direct-Injection Type Thruster Nozzle-Orifice (직접분사방식 추력기 노즐오리피스로부터 발생하는 분무입자의 발달특성)

  • Kim, Jin-Seok;Jung, Hun;Kim, Jeong-Soo;Park, Jeong;Kim, Sung-Cho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.149-152
    • /
    • 2009
  • Spray characteristic parameters such as droplet mean velocity, diameter, and volume flux are measured at various locations of spray in order to investigate the evolutionary feature of droplets exiting from a direct-injection type thruster nozzle-orifice. The experimental results indicate that the large droplets with high velocity at the center of upstream are broken-up into smaller droplets with low velocity due to their continuous momentum loss to surrounding air along with spray evolution toward downstream. Also it is found that the high volume flux expands its distribution in radial direction as a results of spray spreading and dispersion.

  • PDF

An Experimental Study on the Drop Size and the Combustion Characteristics around the Bluff-body (보염기 주위의 연료액적크기와 연소특성에 관한 실험적 연구)

  • Hwang, S.H.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.8 no.3
    • /
    • pp.41-48
    • /
    • 2003
  • This work was performed to investigate the distribution of the fuel droplet size around the bluff-body and the combustion characteristics. The bluff-body is used fur the purpose of increasing the combustion efficiency by stabilizing the flame. Diameters of the bluff-body in this experiment are 6, 8, and 10mm and the impingement angles are $30^{\circ},\;60^{\circ}\;and\;90^{\circ}$. The measurement points were at the distances of 20 and 30 mm axially from the nozzle. The geometry of the bluff-body influenced the spray shape and the combustion characteristics. The SMD was acquired by image processing technique (PMAS), and the mean temperatures were measured by thermocouple. In the condition of ${\theta}=60^{\circ}$, the values of SMD are not greatly varied compared to the other conditions. As the angle of bluff-body was increased, the high temperature region was wider along radial direction. When the air-fuel ratio was larger than 5.2, the NOx concentration was decreased, and an increase in the diameter of the bluff-body decreased the NOx of emission.

  • PDF

A Numerical Study on the Spray-to-Spray Impingement System

  • Lee, Seong-Hyuk;Ko, Gwon-Hyun;Ryou, Hong-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.235-245
    • /
    • 2002
  • The present article aims to perform numerical calculations for inter-spray impingement of two diesel sprays under a high injection pressure and to propose a new hybrid model for droplet collision on the basis of literature findings. The hybrid model is compared with the original O'Rourke's model, which has been widely used for spray calculations. The main difference between the hybrid model and the O'Rourke's model is mainly in determination of the collision threshold condition, in which the preferred directional effect of droplets and a critical collision radius are included. The Wave model involving the cavitation effect inside a nozzle is used for predictions of atomization processes. Numerical results are reported for different impingement angles of 60°and 90°in order to show the influence of the impinging angle on spray characteristics and also compared with experimental data. It is found that the hybrid model shows slightly better agreement with experimental data than the O'Rourke's model.

Development of Digital 3D Real Object Duplication System and Process Technology (디지털 3차원 실물복제기 시스템 및 공정기술 개발)

  • Lee Won-Hee;Ahn Young-Jin;Jang Min-Ho;Choi Kyung-Hyun;Kim Dong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.183-190
    • /
    • 2006
  • Digital 3D Real Object Duplication System (RODS) consists of 3D Scanner and Solid Freeform Fabrication System (SFFS). It is a device to make three-dimensional objects directly from the drawing or the scanning data. In this research, we developed an office type SFFS based on Three Dimensional Printing Process and an industrial SFFS using Dual Laser. An office type SFFS applied sliding mode control with sliding perturbation observer (SMCSPO) algorithm for control of this system. And we measured process variables about droplet diameter measurement and powder bed formation etc. through experiments. In case of industrial type SFFS, in order to develop more elaborate and speedy system for large objects than existing SLS process, this study applies a new Selective Dual-Laser Sintering (SDLS) process and 3-axis Dynamic Focusing Scanner for scanning large area instead of the existing f lens. In this process, the temperature has a great influence on sintering of the polymer. Also the laser parameters are considered like that laser beam power, scan speed, and scan spacing. Now, this study is in progress to evaluate the effect of experimental parameters on the sintering process.