• Title/Summary/Keyword: Droplet Formation

Search Result 216, Processing Time 0.026 seconds

Effect of temperature gradient and residence time on droplet formation of gaseous Di-Octyl Phthalate (DOP가스의 액적형성에 미치는 온도경사 및 체류시간의 영향)

  • Lee, Myong-Hwa;Park, Byung Hyun
    • Particle and aerosol research
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Generally, large amounts of DOP(Di-Octyl Phthalate) chemicals are used as plasticizers in PVC compound manufacturing processes. However, it is very important to collect DOP species immediately from a workplace in order to protect worker's heath and recover them. To accomplish these objectives, we need to understand the droplet formation and growth mechanisms of DOP species. In this study, two important parameters such as temperature gradient and residence time were considered to clarify these mechanisms. We found that residence time is very critical to determine the droplet size distribution of DOP, whereas temperature gradient in general operating conditions(less than $-6.8^{\circ}C/cm$) is negligible.

Numerical Simulation of Inkjet Drop Formation in Piezo Inkjet Head (피에조 잉크젯 헤드의 액적 토출 형상 전산해석)

  • Joo, Youngcheol;Park, Sangkug;Kwon, Key-Si
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.641-647
    • /
    • 2016
  • A drop-on-demand inkjet is used widely for various applications. Therefore, it is important to understand the jetting behavior of the drop from the piezo inkjet. In this study, to predict the jetting behavior, VOF (Volume-of-Fluid) simulation techniques were used and compared with the experimental results. The experimentally measured meniscus movement was used as the input data for the simulation. To verify the simulation, the measured jetting behavior of the mixture fluids of ethylene glycol and IPA (isopropyl alcohol), which has a mixing ratio of 50:50, was used. The numerical simulation of the drop formation using various mixture ratios and its comparison with the measured drop formation confirmed that the proposed method can predict the actual jetting. On the other hand, the satellite drop behavior showed slight differences because the small sized droplet is subject to a more aerodynamic effect during flight because the kinetic energy of the satellite droplet is far smaller than that of the main droplet.

Droplet Based Microfluidic System (액적 기반의 미세유체 시스템의 현황)

  • Jung, Jae-Hoon;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.545-555
    • /
    • 2010
  • Recently, droplet-based microfluidic systems are widely used in various areas ranging from fundamental science including chemistry, biology, and physics to material science and engineering. This article reviews recent development in the droplet based microfluidic system from basic fabrication of tiny device, principle of droplet formation, merging, mixing, control of droplets, and application for the synthesis of novel functional materials. We discuss strong advantages of the droplet based microfluidics in point of control of particle size, morphologies, shapes, and structures.

A Study on Pb/63Sn Solder Bumps Formation using a Solder Droplet Jetting Method (Solder Droplet Jetting 방법을 이용한 Pb/63Sn 솔더 범프의 형성에 관한 연구)

  • 손호영;백경욱
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.122-127
    • /
    • 2003
  • 본 논문에서는 새로운 솔더 범프 형성 방법 중의 하나인 Solder droplet jetting에 의한 솔더 범프 형성 공정에 대해 연구하였으며, 이를 위해 솔더 제팅 직후의 안정한 솔더 액적(solder droplets)의 형성을 위한 공정 변수들의 영향에 대해 먼저 알아보았다 이를 위해 제팅 노즐에 가해지는 파형과 용융 솔더의 온도, 질소 가스의 압력 등에 의한 영향을 주로 살펴보았다. 다음으로 리플로를 거쳐 솔더 범프를 형성하였으며, 다양한 크기의 솔더 범프를 간단한 방법으로 형성하였다. 또한 무전해 니켈/솔더 계면 반응과 Bump shear test를 통한 기계적 성질을 고찰하는 한편, 계면 반응 결과는 스크린 프린팅에 의해 형성된 솔더 범프의 결과와 비교함으로써, 저가의 공정으로 미세 피치를 갖는 솔더 범프를 형성할 수 있는 Solder droplet jetting 방법이 기존의 방법에 의해 형성된 솔더 범프의 특성과 유사함을 고찰하였다. 마지막으로 실제 칩에 적용 되는 솔더 범프를 형성하여 플립칩 어셈블리 및 전기적 테스트를 수행하여, Solder droplet jetting이 실제 차세대 플립칩용 솔더 범프 형성 방법으로서 적용될 수 있음을 고찰하였다.

  • PDF

Evaporative Heat Transfer Characteristics of Droplet on Oxi-nitriding Surface (산질화 표면에서 액적의 증발열전달 특성)

  • Kim, Dae Yun;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.53-57
    • /
    • 2016
  • The present study aims to experimentally investigate the evaporative heat transfer characteristics of Oxi-nitriding SPCC surface. Moreover, the heat transfer coefficient was examined with respect to surface temperature during droplet evaporation. In fact, the nitriding surface showed significant enhancement for anticorrosion performance compared to bare SPCC surface but the thermal resistance also increased due to the formation of compound layer. From the experimental results, the evaporative behavior of sessile droplet on nitriding surface showed similar tendency with the bare surface. Total evaporation time of sessile droplet on the nitriding surface was delayed less than 5%. The difference in heat transfer coefficient increased with the surface temperature, and the maximum difference was estimated to be around 11% at $80^{\circ}C$ surface. Thus, this nitriding surface treatment method could be useful for seawater heat exchanger industries.

Evaporation Characteristics of a Butanol Gel-Fuel Droplet in Atmospheric Pressure Condition (상압에서 부탄올 젤 연료액적의 증발특성)

  • Nam, Siwook;Kim, Hyemin
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.73-80
    • /
    • 2021
  • Evaporation characteristics of single butanol gel fuel were investigated in different mass ratios of gellant and ambient temperatures. Gel fuel was made by adding the pure water and hydroxypropylmethyl cellulose (HPMC) into the 1-butanol. Increase of viscosity was observed when the loading of HPMC increased. The evaporation process of gel droplet could be divided into three stages: droplet heating, micro-explosion and crust formation. Elevation of ambient temperature helped boost the evaporation in all experimental cases, but the effect was mitigated when the mass ratio of HPMC increased. Increase of HPMC weight ratio reduced the evaporation rate.

Numerical Simulation of Three-Dimensional Motion of Droplets by Using Lattice Boltzmann Method

  • Alapati, Suresh;Kang, Sang-Mo;Suh, Yong-Kweon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.2-5
    • /
    • 2008
  • This study describes the numerical simulation of three-dimensional droplet formation and the following motion in a cross-junction microchannel by using the Lattice Boltzmann Method (LBM). Our aim is to develop the three-dimensional binary fluids model, consisting of two sets of distribution functions to represent the total fluid density and the density difference, which introduces the repulsive interaction consistent with a free-energy function between two fluids. We validated the LBM code with the velocity profile in a 3-dimensional rectangular channel. Then, we applied our code to the numerical simulation of a binary fluid flow in a cross-junction channel focusing on the investigation of the droplet formulation. Due to the pressure and interfacial-tension effect, one component of the fluids which is injected from one inlet is cut off into many droplets periodically by the other component which is injected from the other inlets. We considered the effect of the boundary conditions for density difference (order parameter) on the wetting of the droplet to the side walls.

  • PDF

A Numerical Analysis on the Binary Droplet Collision with the Level Set Method (Level Set 방법을 이용한 액적 충돌 현상에 대한 수치해석)

  • Lee, Sang-Hyuk;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.559-564
    • /
    • 2008
  • A prediction of binary droplets collision is important in the formation of falling drops and the evolution of sprays. The droplet velocity, impact parameter and drop-size ratio have influence on the interaction of the droplets. By the effect of these parameter, the collision processes are generated with the complicated phenomena. The droplet collision can be classified into four interactions such as the bouncing, coalescence, reflexive separation and stretching separation. In this study, the two-phase flow of the droplet collision was simulated numerically by using the Level Set method. 2D axi-symmetric simulations on the head-on collisions in the coalescence and reflexive separation, and 3D simulation on the off-center collisions in the coalescence and stretching separation were performed. These numerical results showed good agreements with the experimental and analytical results. For tracking the identity of droplets after the collision, transport equation for the volume fraction of the each initial droplet were used. From this, the identities of droplets were analyzed on the collision of droplets having different size.

  • PDF

Preliminary Study on the Visualization and Quantification of Elemental Compositions in Individual Microdroplets using Solidification and Synchrotron Radiation Techniques

  • Ma, Chang-Jin;Tohno, Susumu;Kasahara, Mikio
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.56-63
    • /
    • 2011
  • Quantifying the solute composition of a cloud droplet (or a whole droplet) is an important task for understanding formation processes and heating/cooling rates. In this study, a combination of droplet fixation and SR-XRF microprobe analysis was used to visualize and quantify elements in a micro-scale droplet. In this study, we report the preliminary outcome of this experiment. A spherical micro-scale droplet was successfully solidified through exposure to ${\alpha}$-cyano-acrylate vapor without affecting its size or shape. An X-ray microprobe system equipped at the beam line 37XU of Super Photon ring 8 GeV (SPring-8) was applied to visualize and quantify the elemental composition in an individual micro-scale droplet. It was possible to reconstruct 2D elemental maps for the K and Cl contained in a microdroplet that was dispensed from the 10-ppm KCl standard solution. Multi-elemental peaks corresponding to X-ray energy were also successfully resolved. Further experiments to determine quantitative measures of elemental mass in individual droplets and high-resolution X-ray microtomography (i.e., 3D elemental distribution) are planned for the future.

Inkjet Printing of Small Droplets Using M-shaped Waveforms (M-shaped 파형을 이용한 작은 액적의 잉크젯 프린팅)

  • Hong, Songeun;Choi, Jiho;Kim, Gieun;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.51-56
    • /
    • 2021
  • Using an inkjet printing process, we have investigated a droplet formation of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) near the orifice of a piezoelectric inkjet head. With an attempt to form the smallest droplet without any satellites, we have applied various waveforms such as the unipolar, bipolar, and M-shaped waveforms. It is found that the droplet velocity and volume vary depending sensitively on the waveform width and voltage. Of those, the M-shaped waveform is shown to provide the smallest droplet volume, followed by the bipolar and then unipolar waveforms. The droplet printed on a PET film roll by the M-shaped waveform has the diameter as small as 46.1 ㎛. It is likely that the second short unipolar in the M-shape waveform increases the droplet velocity gradient, rendering the droplet smaller.