• Title/Summary/Keyword: Droplet Collision

Search Result 44, Processing Time 0.02 seconds

NUMERICAL ANALYSIS OF PHASE CHANGE, SPRAY AND MHD FLOW USING A NUFLEX (NUFLEX의 상변화, 분무유동 및 MHD 해석)

  • Ryou, Hong-Sun;Ro, Kyoung-Chul;Kang, Kwan-Gu;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.99-102
    • /
    • 2007
  • NUFLEX is a general purpose program for the analysis 3D thermo/fluid flow and pre/post processor in a complex geometry. NUFLEX is composed various physical models, such as phase change(solidification/melting) and spray, MHD(Magneto Hydraulic Dynamics) models. It is possible to simulate of continuous cast iron process and spray droplet breakup/collision phenomenon. For the verification of these models, compared with the experimental data and commercial CFD code's results. The results show good agreements with experimental and comercial CFD codes's results.

  • PDF

Effect of Gas-liquid Ratio on Characterization of Two-Phase Spray Injected into a Cross-flow (횡단유동에 분사된 이유체 분무의 기체 액체비가 분무특성에 미치는 영향)

  • Cho, Woo-Jin;Lee, In-Chul;Lee, Bong-Su;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • The effect of two-phase spray injected into subsonic cross-flow was studied experimentally. External-mixing of two-phase spray from orifice nozzle with L/d of 3 was tested with various air-liquid ratio that ranges from 0 to 59.4%. Trajectory of spray and breakup phenomena were investigated by shadowgraph photography. Detailed spray structure was characterized in terms of SMD, droplet velocity, and volume flux using PDPA. Experimental results indicate that penetration length was increased and collision point of liquid jets approached to nozzle exit and distributions of mist-like spray were obtained by increasing air-liquid ratio.

Effect of Nozzle Shape and Injection Pressure on Performance of Hybrid Nozzle (노즐 형상 및 분사 압력이 하이브리드 노즐 성능에 미치는 영향 연구)

  • Ro, Kyoung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.74-79
    • /
    • 2017
  • The fire extinguishing performance of hybrid nozzle systems is improved by injecting an extinguishing agent concentrically into the target site and, in this study, water mist is used as a water curtain to confine the droplets of the agent. In this study, we numerically investigated the effect of the foundation angle and injection pressure on the performance of a hybrid nozzle by evaluating the mean radius of the volume fractions of the agent and water mists. An experiment involving a water mist nozzle was carried out to validate the numerical method and then the droplet behaviors, e.g., stochastic collision, coalescence and breakup, were calculated with 2-way interaction Discrete Particle Modeling (DPM) in the steady state for the hybrid nozzle system. The mean radius of the water mists increased by about 40 %, whereas that of the agent decreased by about 21 %, when the injection pressure was increased from 30 bar to 60 bar. In addition, the mean radius of the agent increased by about 24 % as the foundation angle of the hybrid nozzle head increased from $30^{\circ}$ to $60^{\circ}$. As a result, it can be inferred that the injection angle and pressure are important factors for hybrid water mist designs.

3D Printing-Based Ultrafast Mixing and Injecting Systems for Time-Resolved Serial Femtosecond Crystallography (시간 분해 직렬 펨토초 결정학을 위한 3차원 프린팅 기반의 초고속 믹싱 및 인젝팅 시스템)

  • Ji, Inseo;Kang, Jeon-Woong;Kim, Taeyung;Kang, Min Seo;Kwon, Sun Beom;Hong, Jiwoo
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.300-307
    • /
    • 2022
  • Time-resolved serial femtosecond crystallography (TR-SFX) is a powerful technique for determining temporal variations in the structural properties of biomacromolecules on ultra-short time scales without causing structure damage by employing femtosecond X-ray laser pulses generated by an X-ray free electron laser (XFEL). The mixing rate of reactants and biomolecule samples, as well as the hit rate between crystal samples and x-ray pulses, are critical factors determining TR-SFX performance, such as accurate image acquisition and efficient sample consumption. We here develop two distinct sample delivery systems that enable ultra-fast mixing and on-demand droplet injecting via pneumatic application with a square pulse signal. The first strategy relies on inertial mixing, which is caused by the high-speed collision and subsequent coalescence of droplets ejected through a double nozzle, while the second relies on on-demand pneumatic jetting embedded with a 3D-printed micromixer. First, the colliding behaviors of the droplets ejected through the double nozzle, as well as the inertial mixing within the coalesced droplets, are investigated experimentally and numerically. The mixing performance of the pneumatic jetting system with an integrated micromixer is then evaluated by using similar approaches. The sample delivery system devised in this work is very valuable for three-dimensional biomolecular structure analysis, which is critical for elucidating the mechanisms by which certain proteins cause disease, as well as searching for antibody drugs and new drug candidates.