• 제목/요약/키워드: Drop-on-demand

검색결과 136건 처리시간 0.037초

EHD 원리를 이용한 정전기장 유도 잉크젯 프린터 헤드의 마이크로 Drop-on-Demand 제팅 성능 연구

  • 최재용;김용재;손상욱;안기철;이석한;고한서;;변도영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1947-1950
    • /
    • 2008
  • Printing technology is a very useful method in the several process of industrial fabrication due to noncontact and fast pattern generation. To make micro pattern, we investigate the electrostatic induced inkjet printer head for micro droplet generation and drop-on-demand jetting. In order to achieve the drop-on-demand micro droplet ejection by the electrostatic induced inkjet printer head, the pulsed DC voltage is supplied. In order to find optimal pulse conditions, we tested jetting performance for various bias and pulse voltages for drop-on-demand ejection. In this result, we have successful drop-on-demand operation and micro patterning. Therefore, our novel electrostatic induced inkjet head printing system will be applied industrial area comparing conventional printing technology.

  • PDF

정전기력 방식의 Drop-on-Demand 토출을 위한 MEMS 잉크젯헤드 제작 (Fabrication of MEMS Inkjet Head for Drop-on-Demand Ejection of Electrostatic Force Method)

  • 손상욱;김영민;최재용;고한서;김용재;변도영;이석한
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1441-1444
    • /
    • 2007
  • This paper presents a novel electrostatic drop-an-demand ejector with a conductive pole inside nozzle. The MEMS fabricated pole-type nozzle shows a significant improvement in the performance and reliability of forming meniscus and generating a micro dripping mode of droplet out of the meniscus. It is verified experimentally that the use of the pole-type nozzle. The liquid is used D20+SDS+SWNT (5 %wt). The gap between upper electrode and nozzle is about 600 um. Electrostatic drop-an-demand ejection is observed when a DC voltage of 1.5 kV is applied between the control electrode and ground electrode. Droplet diameter is $100{\mu}m$.

정전기장 유도된 잉크젯 프린터 헤드를 이용한 탄소나노튜브 잉크의 Drop-On-Demand 특성 연구 (The Analysis of Drop-On-Demand Characteristic of Electrostatic Field Induced Inkjet Head System with Carbon Nano Tube (CNT) Ink)

  • 최재용;김용재;손상욱;김영민;변도영;고한서;이석한
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1445-1449
    • /
    • 2007
  • This paper presents the DOD (Drop-On-Demand) characteristic using the electrostatic field induced inkjet printing system. In order to achieve the DOD characteristic of electrostatic field induced inkjet printing, applied the bias voltage of 1.4 kV and the pulse voltage of $2.0\;kV\;{\sim}\;2.7\;kV$ using high voltage pulse generator. Electrostatic field induced droplet ejection is directly observed using a high-speed camera and for investigated DOD characteristic, CNT ink used. The electrostatic field induced inkjet head system has DOD characteristic using pulse generator which can be applied pulse voltage. The bias voltage has a good condition which form meniscus and has micro dripping mode for small size micro droplet. Also, the droplet size decreases with increasing the applied pulse voltage. This paper shows DOD characteristic at electrostatic field induced inkjet head system, Therefore. electrostatic DOD inkjet head system will be applied industrial area comparing conventional electrostatic inkjet head system.

Experimental Investigation of Electrostatic Dripping and Atomization Mode through Non-MEMs based Nozzle Design

  • Choi, Kyung-Hyun;Dang, Hyun-Woo;Rehmani, M.A. Ali
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.13.2-13.2
    • /
    • 2009
  • Electrostatic printing either it is drop-on-demand or continuous has immense applications in non-contact printing systems such as solar cells, flexible printed circuits, RFIDs and bio applications. In this paper a laboratory manufactured nozzle has been designed for the experimental investigation of electrostatic dripping and atomization of liquid. Dripping and atomization conditions such as voltage, nozzle tip diameter, distance between counter electrode and flowrate has been indentified for the designed nozzle. Furthermore it is also demonstrated that the diameter of a generated droplet could be reduced from a significantly large size to a narrow size distribution which can be controlled by volumetric flow rate and applied voltage. This study will help in classify the conditions between different electrostatic dripping mode such as drop-on-demand formation, jet mode and finally the atomization mode based on the laboratory fabricated nozzle head.

  • PDF

신속 시작법용 액적 생성 장치에서의 액적 생성에 대한 연구 (A Study on the Drop Formation of the Liquid Jet Device for Rapid Prototyping)

  • 이우일;김선민;박종선
    • 대한기계학회논문집B
    • /
    • 제25권8호
    • /
    • pp.1021-1029
    • /
    • 2001
  • Rapid prototyping(RP) is a novel technology to create 3D products directly from CAD system. This study proposes a new RP method which uses the PZT ceramic plate to make a Drop-On-Demand liquid jet from the nozzle. The characteristic of drop formation in the new system is investigated both numerically and experimentally. The optimal drop for 3-D Printing can be obtained by the proper amplitude and frequency of the applied voltage. Also the process of the drop formation is analyzed using the pressure wave theory and verified by numerical simulation. First, the pressure wave generated by the deformation of the Piezo-plate at the nozzle is analyzed by solving the 2D axisymmetric wave equation via Finite Element Method. Finally, the drop formation process is simulated using a commercial software, FLOW 3D considering the pressure at the nozzle obtained by solving the wave equation as the boundary condition.

잉크젯 프린팅에서 해상력에 관한 컴퓨터 시뮬레이션 연구 (A Study on the Simulation of the Resolution for Ink-Jet Printing)

  • 이지은;윤종태;구철회
    • 한국인쇄학회지
    • /
    • 제28권1호
    • /
    • pp.51-63
    • /
    • 2010
  • Ink-jet is part of the non impact printing that shooting the ink drop from the nozzle to paper. It is very silence and express good color. There are two types of printing that continuous and drop on demand. But drop on demand process is becoming the mainstream. these days, LCD, PDP is passed more than semiconductor industry. And we expect organic EL, FED as a next display. But product equipment, main component and technology have a gap between an advanced country and us nevertheless physical development. Expecially, previous process part is depended on imports. Ink-jet printing technology that there isn't complicated photo lithography process is attracted, so ink-jet printing resolution is more embossed. But there were not many of ink-jet resolution thesis but ink-jet head or nozzle. Because, to out of the ink from the nozzle is unseeable and hard to experiment. Therefore this thesis was experimented and simulated how can ink-jet printer improved resolution by flow-3d simulation package program.

Development of an Electrostatic Drop-On-Demand inkjet Device for Display Fabrication Process

  • Son, Sang-Uk;Choi, Jae-Yong;Lee, Suk-Han;Kim, Yong-Jae;Ko, Han-Seo;Kim, Hyun-Cheol;Byun, Do-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.655-659
    • /
    • 2006
  • This paper presents a novel electrostatic drop-on-demand inkjet device featured by a MEMS fabricated pole-type and hole-type nozzle with tube shaped orifice and investigates the feasibility of applying the inkjet device to display fabrication process. The electric voltage signal applied to the ring shaped upper electrode plate, against the hole-shaped ground or pole-shaped ground, referred here pole-type and hole-type nozzle respectively, allows ejection of small droplet to take place: That is, a tiny droplet is taken away from the peak of the mountain shaped liquid meniscus formed at the nozzle orifice. It is verified experimentally that the use of the pole type nozzle allows a stable and sustainable micro-dripping mode of droplet ejection for a wider range of applied voltages and of liquid viscosities. This demonstrates a feasibility of electrostatic drop-on-demand inkjet device as a disruptive alternative to conventional print heads such as thermal bubble or piezoelectric inkjet heads.

  • PDF

고속카메라를 이용한 Drop-on-demand 방식의 정전 액적 토출 분석 (Analysis of Electrostatic Ejection of Liquid Droplets in Manner of Drop-on-demand Using High-speed Camera)

  • 김용재;최재용;손상욱;김영민;이석한;변도영;고한서
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.128-133
    • /
    • 2007
  • An electrostatic inkjet head can be used for manufacturing processes of large display systems and printed circuit boards (PCB) as well as inkjet printers because an electrostatic field provides an external force which can be manipulated to control sizes of droplets. The existing printing methods such as thermal bubble and piezo inkjet heads have shown difficulties to control the ejection of the droplets for printing applications. Thus, the new inkjet head has been proposed using the electrostatic force. A numerical analysis has been performed to calculate the intensity of the electrostatic field using the Maxwell's equation. Also, experiments have been carried out to investigate the droplet movement using a downward capillary with outside diameter of $500{\mu}m$. Gravity, surface tension, and electrostatic force have been analyzed with high voltages for a drop-on-demand ejection. It has been observed that the droplet size decreases and the frequency of the droplet formation and the velocity of the droplet ejection increase with increasing the intensity of the electrostatic field using high-speed camera.

  • PDF

피에조 잉크젯 헤드의 액적 토출 형상 전산해석 (Numerical Simulation of Inkjet Drop Formation in Piezo Inkjet Head)

  • 주영철;박상국;권계시
    • 한국산학기술학회논문지
    • /
    • 제17권7호
    • /
    • pp.641-647
    • /
    • 2016
  • 피에조 DOD(drop-on-demand) 잉크젯 프린팅 방식은 다양한 종류의 잉크를 사용할 수 있기 때문에 최근에 첨단 산업에 적용이 활발히 연구되고 있다. 피에조 잉크젯 헤드에서 토출되는 액적의 형성 과정을 VOF(Volume-of-Fluid) 기법을 이용한 전산해석으로 예측하고 이를 측정결과와 비교하였다. 작동유체는 에틸렌 글리콜 50%와 IPA(Isopropil alchol) 50%의 혼합액을 사용하였다. 노즐 출구에서 메니스커스 변위의 시간에 따른 변화를 직접 측정하여 노즐 입구의 속도분포를 예측하고 이를 해석의 초기조건 입력자료로 사용하였다. 측정치와 해석치를 비교한 결과 전산해석이 측정치의 액적 형성 과정을 잘 예측함을 알 수 있었다. 주액적 형성과정보다 위성액적 형성과정 예측에 오차가 약간 컸는데, 이는 정지중의 공기에 큰 질량의 주액적이 날아가는 것을 예측할 때는 해석오차가 적지만 주액적에 의해서 주변 공기 유동이 활발해진 상태에서 적은 질량의 위성액적이 날아가는 것을 예측할 때는 해석오차가 상대적으로 커지기 때문이다. 또한 에틸렌 글리콜과 IPA의 혼합 비율을 달리하여 물성치를 변화시킨 다른 잉크에 대해서도 잉크 액적 형상을 예측한 결과 실험 결과를 비교적 정확히 예측할 수 있었다.