• Title/Summary/Keyword: Drop time

Search Result 1,145, Processing Time 0.023 seconds

Difference of Potential Range Formed at the Anode Between Water Drop Test and Temperature Humidity Bias Test to Evaluate Electrochemical Migration of Solders for Printed Circuit Board

  • Young Ran Yoo;Young Sik Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.153-163
    • /
    • 2023
  • Two types of accelerated tests, Water Drop Test (WDT) and Temperature-Humidity-Bias Test (THBT), can be used to evaluate the susceptibility to electrochemical migration (ECM). In the WDT, liquid water is directly applied to a specimen, typically a patterned conductor like a printed circuit board. Time to failure in the WDT typically ranges from several seconds to several minutes. On the other hand, the THBT is conducted under elevated temperature and humidity conditions, allowing for assessment of design and life cycle factors on ECM. THBT is widely recognized as a more suitable method for reliability testing than WDT. In both test methods, localized corrosion can be observed on the anode. Composition of dendrites formed during the WDT is similar to that formed during THBT. However, there is a lack of correlation between the time to failure obtained from WDT and that obtained from THBT. In this study, we investigated the relationship between electrochemical parameters and time to failure obtained from both WDT and THBT. Differences in time to failure can be attributed to actual anode potential obtained in the two tests.

The Study on Thermal Shock Test Characteristics of Solar Cell for Long-term Reliability Test (장기 신뢰성 평가를 위한 태양전지의 열충격 시험 특성에 관한 연구)

  • Kang, Min-Soo;Kim, Do-Seok;Jeon, Yu-Jae;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • This study has been performed Thermal Shock test for analyze the cause of Power drop in PV(Photovoltaic) Module. Thermal Shock test condition was performed with temperature range from $-40^{\circ}C{\sim}85^{\circ}C$. One cycle time is 30min. which are consist of low and high temperature 15min. each other. The test was performed with total 500cycles. EL, I-V were conducted every 100cycle up to 500cycles. Mono Cell resulted in 8% Power drop rates in Bare Cell and 9% in Solar Cell. In the case of Multi Cell resulted in 6% Power drop rates in Bare Cell and 13% in Solar Cell. After Thermal Shock test, Solar Cell's Power drop resulted from surface damages, but in the case of Bare Cell's Power drop had no surface damages. Therefore, Bare Cell's Power drop was confirmed as according to leakage current increase by analysis of Fill Factor after Thermal Shock test. Also, Solar Cell's Power drop rates are higher than that of Bare Cell because of surface damages and consuming electric power increase. From now on, it should be considered that analyzed the reasons of Fill Factor decrease and irregular Power drop in PV module and Cell level using cross section, various conditions and test methods.

Performance Evaluation of Sintered Metal Filter in LILW Vitrification Facility (중.저준위 방사성폐기물 유리화설비에서 금속필터 적용성평가)

  • Park, Seung-Chul;Kim, Byong-Ryol;Hwang, Tae-Won
    • Journal of Energy Engineering
    • /
    • v.15 no.3 s.47
    • /
    • pp.146-153
    • /
    • 2006
  • A performance test of the stainless steel based sintered metal filter was conducted on the low and intermediate level radioactive waste (LILW) vitrification process. The applicability of the metal filter was based on the test results as well. The baseline pressure drop of the metal filter was evaluated similar to the ceramic filter. During the test, when the flow rate of off-gas was $110Nm^{3}/h$, the total baseline pressure drop was shown as $92mmH_{2}O$. The total pressure drop was attributed to the filter media and the residual dust layer and the value of each was $25mmH_{2}O\;and\;67mmH_{2}O$ respectively. The SEM-EDS spectrum and micrograph of the metal filter specimen showed, no corrosion and no physical damage both at the skin membrane and at the support layer. And most of the baseline pressure drop was caused by the deposition of dust on the surface of the membrane. In conclusion, even though the filter exposure time was short at the test, the performance of the stainless steel based metal filter was acceptable for the treatment of LILW vitrification process.

Effect of Boundary Layer Generated on the fin surfaces of a Compact Heat Exchanger on the Heat Transfer and Pressure Drop Characteristics (컴팩트형 열교환기의 핀 표면에서 발생하는 경계층이 열교환기의 전열 및 압력강하 특성의 변화에 미치는 영향에 관한 수치해석적 연구)

  • KIM Chul-Ho;Jung Ji-Yong
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.82-88
    • /
    • 1998
  • As a par of a project related to the development of the design algorithm of a compact heat exchanger for the application of the electronic home appliances, the effect of the discreteness of the airflow boundary generated on the cooling fin surface on the heat transfer and pressure drop characteristics of the heat exchanger was studied numerically. In general, there are two critical design parameters seriously considered in the design of the heat exchanger; heat transfer rate(Q) and pressure drop coefficient(C/sub p/). Even though the higher heat transfer rate with lower pressure drop characteristics is required in a design of the heat exchanger, it is not an easy job to satisfy both conditions at the same time because these two parameters are phenomenally inversely proportional. To control the boundary layer thickness and its length along the streamline, the surface of the flat fin was modified to accelerate the heat transfer rate on the fin surface. To understand the effect of the discreted fin size(S/sub w/) and its location(S/sub h/) on the performance of the heat exchanger in the airflow field, the flat fin was modified as shown in Fig. 1. From this study, it was found that the smaller and more number of slits on the fin surface showed the higher energy diffusion rate. It means that the discreteness of the boundary layer is quite important on the heat transfer rate of the heat exchanger. On the other hand, if the fin surface configuration is very complex than needed, higher static pressure drop occurs than required in a system and it may be a reason of the induced aerodynamic noise in the heat exchanger.

  • PDF

Blast Design for Controlled Augmentation of Muck Pile Throw and Drop (발파석의 비산과 낙하를 조절하기 위한 발파 설계)

  • Rai, Piyush;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.360-368
    • /
    • 2010
  • The paper presents a case study from a surface mine where the controlled augmentation of throw and drop of the blasted muck piles was warranted to spread the muck piles on the lower berm of the bench. While the augmentation of throw increased the lateral spread and the looseness of the broken muck, the augmentation of drop significantly lowered the muck pile height for easy excavation by the excavators. In this light, the present paper highlights and discusses some pertinent changes in the blast design parameters for such specialized application of cast blasting in a surface mine, where a sandstone bench, with average height of 22-24 m was to be made amenable for excavation by 10 m3 rope shovels, which possessed maximum digging capability of up to 14 m. The results of tailoring the blast design parameters for augmentation of throw and drop are compared with the baseline blasts which were earlier practiced on the same bench by dividing the full height of the bench in 2-slices; upper slice (10-14 m high) and lower slice (12-15 m high). Results of fragment size, its distribution and total cycle time of excavator (shovel) are presented, and discussed.

Numerical Analysis of the Energy-Saving Tray Absorber of Flue-Gas Desulfurization Systems (배연탈황설비의 에너지 절약형 트레이 흡수탑에 대한 수치 해석적 연구)

  • Hwang, Jae-Min;Choi, Ssang-Suk;Chung, Jin-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.8
    • /
    • pp.775-782
    • /
    • 2010
  • This study is performed to study the effect of the tray in the absorber of a flue-gas desulphurization (FGD) system by using a computational fluid dynamic (CFD) technique. Stagnant time of slurry and the pressure drop in the FGD absorber increase when a tray is used in the absorber. Stagnant time of slurry results in an increase in the desulfurization effect and a decrease in the power of the absorber recirculation pump; however, increased pressure drop requires more power of booster fan in the FGD system should be increased. The gas and slurry hydrodynamics inside the absorber is simulated using a commercial CFD code. The continuous gas phase has been modeled in an Eulerian framework, while the discrete liquid phase has been modeled by adopting a Lagrangian approach by tracking a large number of particles through the computational domain. It was observed that the power saved upon increasing the stagnant time of slurry was more than increased power with pressure drop.

Comparison of Metal Transfer Behavior in Electrodes for Shielded Metal Arc Welding

  • Xu, X.;Liu, S.;Bang, K.S.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.15-22
    • /
    • 2004
  • Metal transfer behavior of three shielded metal arc welding electrodes, AWS El1018, E6013 and E6010, were investigated through the characterization of size distribution of droplets and measurement of arc voltage signals. Of the three electrodes, Ell018 electrode showed the largest droplet size with the smallest amount of spatter, while E6010 electrode showed the smallest droplet size with the largest amount of spatter. Even though Ell0l8 electrode showed a good agreement between the frequencies of voltage drop in FFT processed voltage signals and the transfer rate of droplets, E6013 and E6010 electrodes showed weaker correlation because of their dominant explosive transfer behavior. The type of cathode used and electrode baking time also influenced the metal transfer behavior. Compared to bead-on-plate welding using steel plate as a cathode, welding on a water-cooled copper pipe showed less short-circuiting and higher melting rate in all electrodes because of higher arc potential and/or anode drop. When baked for a long time, E6010 electrode showed much more stable arc with less short-circuiting and explosion due to the loss of gas formation ingredients.

  • PDF

A study on the impact pulse analysis with various shapes and materials of impactor (충격자의 형상 및 재질변화에 따른 펄스형성에 관한 연구)

  • Lee, Yeong-Sin;Kim, Dong-Jin;Gang, Geun-Hui;O, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.52-63
    • /
    • 1998
  • The impact programmer for impact test was designed and the impact analysis was conducted. The effects of the material and geometric parameters on the impact force and pulse shape were investigated. The impact characteristics were examined by experimental and finite element method. The impact test was conducted with free drop impact tester. The ABAQUS/Explicit 5.5 version was used for finite element analysis. The geometric parameters of the conical and dome type impact programmer were analyzed. The polyurethane impact programmers were fabricated and tested. The effects of the hardness and thickness of the impact programmer were studied. The peak acceleration and time duration of impact programmer have close correlation with the hardness, impact energy and thickness of the impactor. The experiment was good agreement with analytical predictions. The impact pulse shape generated with polyurethane impact programmer was half sine shape. The maximum impact force was proportional to impact energy. The impact acceleration was decreased with thickness of impact programmer. The maximum impact time duration level was about 2 msec.

Experimental Study on Performance Characteristics of High Speed Air Valve for Water Works (급수용 급속공기밸브의 성능특성에 관한 실험적 연구)

  • Lee, Sun Kon;Kaong, Sae Ho;Yang, Cheol Soo;Woo, Chang Ki
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.1-6
    • /
    • 2014
  • When the fluid energy convert into kinetic energy due to water hammer, the propagation velocity of pressure wave appear. The propagation velocity of pressure wave(1050 m/s) of very fast could be damage to the pipeline system. If the occurrence of water hammer is due to down-pressure, the faster the air exhaust or supply device is needed. it is high Speed Air Valve. In this paper, Each 3.12, 3.13, 3.72, $3.74kg/cm^2$ pipeline pressure were setting, and then executed pressure rapid drop for obtaining a high Speed Air Valve Operating time and pressure change data. the result was that pipe line pressure stabilization time were each 0.98, 1, 1.22, 1.25 sec. In other words, that pressure drop experimental results pipe line pressure was equal to atmospheric pressure without negative pressure After about one second. The study result would be useful to pipe line system stability design because this data could be foresee pressure stabilization time.

NUMERICAL STUDY OF THE DROPLET EJECTION BEHAVIOR OF NEWTONIAN AND SHEAR-THINNING FLUIDS (뉴튼유체와 전단희석유체의 액적분사 거동에 대한 수치해석적 연구)

  • Kim, E.;Baek, J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.33-38
    • /
    • 2012
  • The droplet ejection behavior from drop-on-demand printhead are investigated numerically for Newtonian and shear-thinning fluid. The numerical simulation is performed using a volume-of-fluid model. In this study, we compare the printable range in terms of Z number and pinch-off time for Newtonian and shear-thinning fluids. The printability range are found to be 1.08 $$\leq_-$$ Z $$\leq_-$$ 12.9 for Newtonian fluid and 0.8 $$\leq_-$$ Z $$\leq_-$$ 12.9 for shear-thinning fluid. However, air entrainment is observed during merging of primary and satellite droplet within the printability range. The pinch-off time of the shear-thinning fluid is apparently shorter compared to the corresponding Newtonian fluid due to shear-thinning effects and the differences in the pinch-off time is enlarged significantly when the capillary number is larger than 0.5.