• Title/Summary/Keyword: Drop simulations

Search Result 194, Processing Time 0.026 seconds

Evaluation of Internal Blast Overpressures in Test Rooms of Elcetric Vehicles Battery with Pressure Relief Vents (압력배출구를 설치한 전동화 차량 배터리 시험실의 내부 폭압 평가)

  • Pang, Seungki;Shin, Jinwon;Jeong, Hyunjin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.7-18
    • /
    • 2022
  • Secondary batteries used in electric vehicles have a potential risk of ignition and explosion. Various safety measures are being taken to prevent these risks. A numerical study was performed using a computational fluid dynamics code on the cases where pressure relief vents that can reduce the blast overpressures of batteries were installed in the through-compression test room, short-circuit drop test room, combustion test room, and immersion test room in facilities rleated to battery used in electric vehicles. This study was conducted using the weight of TNT equivalent to the energy release from the battery, where the the thermal runaway energy was set to 324,000 kJ for the capacity of the lithium-ion battery was 90 kWh and the state of charge (SOC) of the battery of 100%. The explosion energy of TNT (△HTNT) generally has a range of 4,437 to 4,765 kJ/kg, and a value of 4,500 kJ/kg was thus used in this study. The dimensionless explosion efficiency coefficient was defined as 15% assuming the most unfavorable condition, and the TNT equivalent mass was calculated to be 11 kg. The internal explosion generated in a test room shows the very complex propagation behavior of blast waves. The shock wave generated after the explosion creates reflected shock waves on all inner surfaces. If the internally reflected shock waves are not effectively released to the outside, the overpressures inside are increased or maintained due to the continuous reflection and superposition from the inside for a long time. Blast simulations for internal explosion targeting four test rooms with pressure relief vents installed were herein conducted. It was found that that the maximum blast overpressure of 34.69 bar occurred on the rear wall of the immersion test room, and the smallest blast overpressure was calculated to be 3.58 bar on the side wall of the short-circuit drop test room.

Force Control of Main Landing Gear using Hybrid Magneto-Rheological Damper (하이브리드 MR댐퍼를 이용한 주륜 착륙장치 하중제어기법 연구)

  • Hyun, Young-O;Hwang, Jae-Up;Hwang, Jae-Hyuk;Bae, Jae-Sung;Lim, Kyoung-Ho;Kim, Doo-Man;Kim, Tae-Wook;Park, Myung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.315-320
    • /
    • 2010
  • To improve not only the basic performance but also the fail-safe performance, power consumption of the main landing gear for helicopters, a semi-active control landing gear using hybrid MR damper, was introduced in this paper. This damper of the configuration to install a permanent magnet in a electromagnet MR damper, was designed by the trade-off study on permanent magnet location and a magnet field analysis. Force control algorithm which keep the sum of air spring force and damping force at a specified value during landing, was used for the controller. The drop simulations using ADAMS Model for this semi-active control landing gear, were done. The improvement of the preceding performances as the result to evaluate the landing performance by the simulations, has been confirmed.

Assessment of Historical Earthquake Magnitudes and Epicenters Using Ground Motion Simulations (지진동 모사를 통한 역사지진 규모와 진앙 평가)

  • Kim, Seongryong;Lee, Sang-Jun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.59-69
    • /
    • 2021
  • Historical records of earthquakes are generally used as a basis to extrapolate the instrumental earthquake catalog in time and space during the probabilistic seismic hazard analysis (PSHA). However, the historical catalogs' input parameters determined through historical descriptions rather than any quantitative measurements are accompanied by considerable uncertainty in PSHA. Therefore, quantitative assessment to verify the historical earthquake parameters is essential for refining the reliability of PSHA. This study presents an approach and its application to constrain reliable ranges of the magnitude and corresponding epicenter of historical earthquakes. First, ranges rather than specific values of ground motion intensities are estimated at multiple locations with distances between each other for selected historical earthquakes by reviewing observed co-seismic natural phenomena, structural damage levels, or felt areas described in their historical records. Based on specific objective criteria, this study selects only one earthquake (July 24, 1643), which is potentially one of the largest historical earthquakes. Then, ground motion simulations are performed for sufficiently broadly distributed epicenters, with a regular grid to prevent one from relying on strong assumptions. Calculated peak ground accelerations and velocities in areas with the historical descriptions on corresponding earthquakes are converted to intensities with an empirical ground motion-intensity conversion equation to compare them with historical descriptions. For the ground motion simulation, ground motion prediction equations and a frequency-wavenumber method are used to consider the effects of possible source mechanisms and stress drop. From these quantitative calculations, reliable ranges of epicenters and magnitudes and the trade-off between them are inferred for the earthquake that can conservatively match the upper and lower boundaries of intensity values from historical descriptions.

Study on failure behaviors of mixed-mode cracks under static and dynamic loads

  • Zhou, Lei;Chen, Jianxing;Zhou, Changlin;Zhu, Zheming;Dong, Yuqing;Wang, Hanbing
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.567-582
    • /
    • 2022
  • In the present study, a series of physical experiments and numerical simulations were conducted to investigate the effects of mode I and mixed-mode I/II cracks on the fracture modes and stability of roadway tunnel models. The experiments and simulations incorporated different inclination angle flaws under both static and dynamic loads. The quasi-static and dynamic testing were conducted by using an electro-hydraulic servo control device and drop weight impact system (DWIS), and the failure process was simulated by using rock failure process analysis (RFPA) and AUTODYN software. The stress intensity factor was also calculated to evaluate the stability of the flawed roadway tunnel models by using ABAQUS software. According to comparisons between the test and numerical results, it is observed that for flawed roadways with a single radical crack and inclination angle of 45°, the static and dynamic stability are the lowest relative to other angles of fractured rock masses. For mixed-mode I/II cracks in flawed roadway tunnel models under dynamic loading, a wing crack is produced and the pre-existing cracks increase the stress concentration factor in the right part of the specimen, but this factor will not be larger than the maximum principal stress region in the roadway tunnel models. Additionally, damage to the sidewalls will be involved in the flawed roadway tunnel models under static loads.

Effects of cyclic mean pressure of helium gas on performance of integral crank driven stirling cryocooler

  • Hong, Yong-Ju;Ko, Junseok;Kim, Hyo-Bong;Park, Seong-Je
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.3
    • /
    • pp.30-34
    • /
    • 2016
  • An integral crank driven Stirling cryocooler is solidly based on concepts of direct IR detector mounting on the cryocooler's cold finger, and the integral construction of the cryocooler and Dewar envelope. Performance factors of the cryocooler depend on operating conditions of the cryocooler such as a cyclic mean pressure of the working fluid, a rotational speed of driving mechanism, a thermal environment, a targeted operation temperature and etc.. At given charging condition of helium gas, the cyclic mean pressure of helium gas in the cryocooler changes with temperatures of the cold end and the environment. In this study, effects of the cyclic mean pressure of helium gas on performances of the Stirling cryocooler were investigated by numerical analyses using the Sage software. The simulation model takes into account thermodynamic losses due to an inefficiency of regenerator, a pressure drop, a shuttle heat transfer and solid conductions. Simulations are performed for the performance variation according to the cyclic mean pressure induced by the temperature of the cold end and the environment. This paper presents P-V works in the compression and expansion space, cooling capacity, contribution of losses in the expansion space.

Energy Efficiency Routing Algorithm for Vessel Ubiquitous Sensor Network Environments (선박 USN에서 에너지 효율성을 위한 라우팅 알고리즘)

  • Choi, Myeong-Soo;Pyo, Se-Jun;Lee, Jin-Seok;Yoon, Seok-Ho;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5B
    • /
    • pp.557-565
    • /
    • 2011
  • In this paper, we assume that sensor nodes organize the multi-hop networks, are fixed, and operate as full function devices(FFD). The wireless sensor network(WSN) only consists of mobile nodes without the assistance from the fixed infrastructure, which increases the flexibility of the network. However, it is difficult to perform routing in the WSN, since sensor nodes freely join in and drop out of the network, and some sensor nodes have very low power. We propose the algorithm combining routing schemes based on the bitmap and cluster methods in this paper. Through computer simulations, we show the validity of the proposed algorithm.

Enhancement of Power System Transient Stability and Power Quality Using a Novel Solid-state Fault Current Limiter

  • Fereidouni, A.R.;Vahidi, B.;Mehr, T. Hoseini;Doiran, M. Garmroodi
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.474-483
    • /
    • 2011
  • Solid-state fault current limiters (SSFCL) in power systems are alternative devices to limit prospective short circuit currents from reaching lower levels. Fault current limiters (FCL) can be classified into two categories: R-type (resistive) FCLs and L-type (inductive) FCLs. L-type FCL uses an inductor to limit fault level and is more efficient in suppressing voltage drop during a fault. In contrast, R-type FCL is constructed with a resistance and is more effective in consuming the acceleration energy of generators during a fault. Both functions enhance the transient stability of the power system. In the present paper, a novel SSFCL is proposed to enhance power system transient stability and power quality. The proposed SSFCL uses both functions of an L-type and R-type FCL. SSFCL consists of four diodes, one self-turn-off IGCT, a current-limiting by-pass inductor (L), and a variable resistance parallel with an inductor for improvement of power system stability and prevention of over-voltage across SSFCL. The main advantages of the proposed SSFCL are the simplicity of its structure and control, low steady-state impedance, fast response, and the existence of R-type and Ltype impedances during the fault, all of which improve power system stability and power quality. Simulations are accomplished in PSCAD/EMTDC.

A Study on the Shock Analysis of the Multi-Function Console According to the Shock Response Spectrum Requirements of the Elastic Platform (탄성플랫폼 충격응답 스펙트럼 기준에 따른 다기능콘솔 충격해석 연구)

  • Park, Jae Hoon;Kim, Won Hyung;Kim, Hyun Sil;Choi, Young Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.805-811
    • /
    • 2016
  • Prior to installation in a navy ship, shipboard equipment should be qualified by shock test requirements. The multi-function console mounted on the elastic platform of the ship should also withstand given shock loads. In this study, both real shock test methods, as well as numerical computer simulations using the finite element method were used to verify structural durability under shock load conditions. First, we used domestic test facilities to perform possible shock tests, including an impact hammer test, a drop table test and a shaker shock test. Full model tests satisfying the shock response spectrum level were performed. Thereafter, an analytical model of the complex console structure was built by the finite element method. Finally, numerical results were verified by modal test results of the real product and an FEA analysis was also performed with a full model transient response analysis.

Operational Analysis of Energy Storage System to Improve Performance of Wind Power System with Induction Generator (농형유도 풍력발전기의 성능개선을 위한 에너지저장장치의 동작특성 분석)

  • Lee, Ji-Heon;Shim, Myong-Bo;Lee, Hye-Yeon;Han, Byung-Moon;Yang, Seung-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1138-1145
    • /
    • 2009
  • This paper presents an active and reactive power compensator for the wind power system with squirrel-cage induction generator. The output power of a wind power system changes irregularly according to the variation of wind speed. The developed system is able to continuously compensate the active and reactive power. The 3-phase inverter operates for the compensation of reactive power, while the DC/DC converter with super-capacitors operates for the compensation of active power. The operational feasibility of the proposed model was verified by simulations with PSCAD/EMTDC and the feasibility of hardware implementation was confirmed by experimental works with a scaled hardware model. The proposed compensator can be expected that developed system may be used to compensated the abrupt power variation due to sudden change of wind speed or sudden power-drop by tower effect. It can be also applied for the distributed generation and the Micro-Grid.

Performance Analysis of Three-Phase Phase-Locked Loops for Distorted and Unbalanced Grids

  • Li, Kai;Bo, An;Zheng, Hong;Sun, Ningbo
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.262-271
    • /
    • 2017
  • This paper studies the performances of five typical Phase-locked Loops (PLLs) for distorted and unbalanced grid, which are the Decoupled Double Synchronous Reference Frame PLL (DDSRF-PLL), Double Second-Order Generalized Integrator PLL (DSOGI-PLL), Double Second-Order Generalized Integrator Frequency-Lock Loop (DSOGI-FLL), Double Inverse Park Transformation PLL (DIPT-PLL) and Complex Coefficient Filter based PLL (CCF-PLL). Firstly, the principles of each method are meticulously analyzed and their unified small-signal models are proposed to reveal their interior relations and design control parameters. Then the performances are compared by simulations and experiments to investigate their dynamic and steady-state performances under the conditions of a grid voltage with a negative sequence component, a voltage drop and a frequency step. Finally, the merits and drawbacks of each PLL are given. The compared results provide a guide for the application of current control, low voltage ride through (LVRT), and unintentional islanding detection.