• Title/Summary/Keyword: Drop/impact

검색결과 526건 처리시간 0.032초

대형 디지털TV Display 모듈의 내충격 설계를 위한 손상평가 연구 (A Shock Damage Evaluation Study of Large Digital TV Display Modules)

  • 문성인;최재붕;김영진;서형원;이정권;구자춘
    • 한국소음진동공학회논문집
    • /
    • 제14권10호
    • /
    • pp.945-954
    • /
    • 2004
  • Recently, specifications of flat display module is going to be higher definition, brightness and more wide viewing angle. On the other hand, physical thickness of those modules is forced to be slimmer and lighter. The flat display modules such as plasma or TFT-LCD employ thin crystallized panels that are normally weak to high level transient mechanical energy inputs. As a result, anti-shock performance is one of the most important design specifications of TFT-LCD modules. TFT-LCD module manufacturers and their customers like PC or TV makers perform a series of strict impact/drop test for the modules. However most of the large display module designs are generated based on engineer's own trial-error experiences. Those designs may result in disqualification from the drop/impact test during final product evaluation. A rigorous study on the impact failure of the displays is of course necessitated in order to avoid the problems. In this article, a systematic design evaluation is presented with combinations of FEM modeling and testing to support the optimal shock proof display design procedure.

폴리우레탄 폼의 동적 응답에 미치는 밀도 및 온도의 영향 (Dynamic Response of Polyurethane Foam with Density and Temperature Effects)

  • 황병관;김정현;김정대;이제명
    • 대한조선학회논문집
    • /
    • 제56권4호
    • /
    • pp.291-297
    • /
    • 2019
  • Polyurethane foam is the most efficient, high-performance insulation material, used for liquefied natural gas carrier (LNGC) insulation. Because LNGC is exposed to sloshing impact load due to ship motion of 6 degrees of freedom, polyurethane foam should be sufficient dynamic properties. The dynamic properties of these polyurethane foam depends on temperature and density. Therefore, this study investigates the dynamic response of polyurethane foam for various temperature($25^{\circ}C$, $-70^{\circ}C$, $-163^{\circ}C$) and density($90kg/m^3$, $113kg/m^3$, $134kg/m^3$, $150kg/m^3$) under drop impact test with impact energy of 20J, 50J, and 80J. For dynamic response was evaluated in terms of peak force, peak displacement, absorb energy, and the mechanical property with minimized density effects. The results show the effect of temperature and density on the polyurethane foam material for the dynamic response.

충격에 의해 손상된 섬유강화 열가소성 수지 복합재료의 재활용 횟수에 따른 물성의 변화 (The Influence of Mechanical Properties with the Number of Recycling of Fiber-reinforced Thermoplastic Composites Damaged by Impact)

  • 배곽진;이준석
    • Composites Research
    • /
    • 제35권2호
    • /
    • pp.75-79
    • /
    • 2022
  • 본 연구에서는 충격에 의해 파손된 열가소성 유리 섬유 강화 복합재료의 재성형을 통한 물성변화를 조사하였다. 복합재료 시편은 유리섬유 부직포와 폴리프로필렌 필름을 이용하여 핫 프레스 압축 성형 공정을 통해 제작하였다. 총 3번의 낙하 충격 테스트를 진행하였으며, 시편의 물성을 확인하기 위하여 인장시험, 굽힘시험, 낙하충격시험, 시차주사열량계, 주사전자현미경 측정을 진행하였다. 그 결과, 재활용 단계가 반복될수록 결정화도, 인장강도, 탄성계수, 굴곡강도는 증가하였으나 충격특성은 크게 감소하였다.

Estimation of impact characteristics of RC slabs under sudden loading

  • Erdem, R. Tugrul
    • Computers and Concrete
    • /
    • 제28권5호
    • /
    • pp.479-486
    • /
    • 2021
  • Reinforced concrete (RC) slabs are exposed to several static and dynamic effects during their period of service. Accordingly, there are many studies focused on the behavior of RC slabs under these effects in the literature. However, impact loading which can be more effective than other loads is not considered in the design phase of RC slabs. This study aims to investigate the dynamic behavior of two-way RC slabs under sudden impact loading. For this purpose, 3 different simply supported slab specimens are manufactured. These specimens are tested under impact loading by using the drop test setup and necessary measurement devices such as accelerometers, dynamic load cell, LVDT and data-logger. Mass and drop height of the hammer are taken constant during experimental study. It is seen that rigidity of the specimens effect experimental results. While acceleration values increase, displacement values decrease as the sizes of the specimens have bigger values. In the numerical part of the study, artificial neural networks (ANN) analysis is utilized. ANN analysis is used to model different physical dynamic processes depending upon the experimental variables. Maximum acceleration and displacement values are predicted by ANN analysis. Experimental and numerical values are compared and it is found out that proposed ANN model has yielded consistent results in the estimation of experimental values of the test specimens.

냉장고 낙하시 하힌지 동적변형 해석 (Finite Element Analysis of Dynamic Deformation of Refrigerator's Lower Hinge during Drop Test)

  • 홍석무;최용찬;엄성욱;김홍래;현홍철
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제3권1호
    • /
    • pp.37-44
    • /
    • 2015
  • 본 연구에서는 유한요소해석으로 냉장고 낙하충격에 대한 하힌지의 변형거동을 분석했다. 우선 하힌지 및 하부포장재 동적물성 확보를 위해 각각 속도 별 굽힘시험과 압축시험을 수행했다. 이어 시험에서 얻은 하중-변위곡선과 유사한 거동을 나타내는 하힌지 및 하부 포장재의 유동응력식을 역공학으로 얻었다. 확보한 물성데이터를 이용해 LS-DYNA로 낙하해석을 수행해, 낙하시 냉장고 자체 및 하힌지 변형거동을 분석했다. 최종적으로 3D 측정으로 분석한 실 냉장고 낙하시험으로, 낙하해석 모델의 유효성을 검증했다. 본 연구에서 제시한 해석모델은 추후 하힌지 및 포장재의 내 충격설계 등에 효과적으로 활용될 수 있을 것이다.

Feasibility of UHPC shields in spent fuel vertical concrete cask to resist accidental drop impact

  • P.C. Jia;H. Wu;L.L. Ma;Q. Peng
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4146-4158
    • /
    • 2022
  • Ultra-high performance concrete (UHPC) has been widely utilized in military and civil protective structures to resist intensive loadings attributed to its excellent properties, e.g., high tensile/compressive strength, high dynamic toughness and impact resistance. At present, aiming to improve the defects of the traditional vertical concrete cask (VCC), i.e., the external storage facility of spent fuel, with normal strength concrete (NSC) shield, e.g., heavy weight and difficult to fabricate/transform, the feasibility of UHPC applied in the shield of VCC is numerically examined considering its high radiation and corrosion resistance. Firstly, the finite element (FE) analyses approach and material model parameters of NSC and UHPC are verified based on the 1/3 scaled VCC tip-over test and drop hammer test on UHPC members, respectively. Then, the refined FE model of prototypical VCC is established and utilized to examine its dynamic behaviors and damage distribution in accidental tip-over and end-drop events, in which the various influential factors, e.g., UHPC shield thickness, concrete ground thickness, and sealing methods of steel container are considered. In conclusion, by quantitatively evaluating the safety of VCC in terms of the shield damage and vibrations, it is found that adopting the 300 mm-thick UHPC shield instead of the conventional 650 mm-thick NSC shield can reduce about 1/3 of the total weight of VCC, i.e., about 50 t, and 37% floor space, as well as guarantee the structural integrity of VCC during the accidental drop simultaneously. Besides, based on the parametric analyses, the thickness of concrete ground in the VCC storage site is recommended as less than 500 mm, and the welded connection is recommended for the sealing method of steel containers.

액정 디스플레이(LCD) 낙하 충격해석에 관한 연구 (A Study on Strength Evaluation of LCD Glass for Drop test)

  • 정재학;김한바라;승용호;최현호
    • 한국정밀공학회지
    • /
    • 제24권10호
    • /
    • pp.99-108
    • /
    • 2007
  • As the structure of a mobile phone becomes thin to catch up with a slim product trend, the reliability of a LCD module is on the rise as a big issue for a product design. A drop test is the most basic and important verification method for a mechanical quality control but it requires much time and cost during a product development process. Thus many manufacturers have considered design guide lines using CAE and simulation for more effective usage of limited resources on the market. In this paper, the Maximum Principle Stress of a LCD glass panel is calculated on the basis of explicit FE Analyses method and input conditions are determined according to the general test standard. The design guideline for reliability improvements are suggested on the basis of the results of FE Analysis.

충돌분류에 의한 액적의 크기 및 속도특성에 관한 실험적 연구 (An Experimental study on the drop size and velocity characteristic of drop by impinging jets)

  • 한재섭;김선진
    • 한국분무공학회지
    • /
    • 제4권4호
    • /
    • pp.30-37
    • /
    • 1999
  • The breakup characteristics of liquid sheet formed by the liquid rocket injector has a close relation with the combustion efficiency. In this paper, basic characteristics of droplet size and velocity distribution were measured with PDPA for the Like Doublet Impinging Injector. Test variables were the angle of impact, the diameter of orifice and jet velocity. Water was used as test fluid. As a result, for impingement angle less than 90 degree, following correlations were obtained between drop size and design parameters : $D_{32}({\mu}m)=295.0{\times}V^{-0.09}\times(2\theta)^{-0.1}{\times}d^{0.072}$. For impingement angle greater than 100 degree, drop sizes were increased but eventually converged to a certain limiting value.

  • PDF

유공압 착륙장치 낙하시험 (Drop Test of an Oleo-pneumatic Landing Gear)

  • 김태욱;이상욱;신정우;이승규;김성찬;황인희;강신현
    • 한국항공우주학회지
    • /
    • 제38권11호
    • /
    • pp.1130-1135
    • /
    • 2010
  • 착륙장치는 완충장치를 이용하여 항공기 착륙 시의 충격을 흡수하는 역할을 한다. 다양한 종류의 완충장치가 존재하나, 완충효율 측면에서 가장 우수한 것은 유공압 방식이다. 착륙장치의 완충 성능은 반드시 낙하시험을 통해 입증하여야 하며, 이는 미 군사규격, 미연방 항공규정 등에서 공통적으로 요구하는 있는 사항이다. 이 논문에서는 낙하시험을 위한 설비 구성, 시험 절차 및 결과분석 방법을 실제 낙하시험 사례와 함께 제시한다.