• 제목/요약/키워드: Drones Image

검색결과 142건 처리시간 0.026초

Lens Design of Camera through Optimization of the Third Order Seidel Aberration and Statistical Tolerance Analysis

  • Lee, Kyutae;Kim, Young-Joo;Kim, Youngwoon
    • Journal of the Optical Society of Korea
    • /
    • 제20권3호
    • /
    • pp.413-426
    • /
    • 2016
  • There has been much advancement in the field of aerial cameras for geographical features with the help of drones, image processing power and computer aided optical programs. In this study, we propose a new optical lens design technique which minimizes the amount of ‘the third order Seidel aberration’ for enhancing MTF. In addition, we suggest a new optical lens design which stabilizes the mass-production yield through R.S.M and has robustness secure through the Taguchi method. Eventually, the image processing algorithm of stereo matching is implemented in order to evaluate whether the proposed lens design result meets adequate specifications for the use of dual aerial photographs or not. This paper provides good guidance for the optical design by development of experiments.

Improving Wind Speed Forecasts Using Deep Neural Network

  • Hong, Seokmin;Ku, SungKwan
    • International Journal of Advanced Culture Technology
    • /
    • 제7권4호
    • /
    • pp.327-333
    • /
    • 2019
  • Wind speed data constitute important weather information for aircrafts flying at low altitudes, such as drones. Currently, the accuracy of low altitude wind predictions is much lower than that of high-altitude wind predictions. Deep neural networks are proposed in this study as a method to improve wind speed forecast information. Deep neural networks mimic the learning process of the interactions among neurons in the brain, and it is used in various fields, such as recognition of image, sound, and texts, image and natural language processing, and pattern recognition in time-series. In this study, the deep neural network model is constructed using the wind prediction values generated by the numerical model as an input to improve the wind speed forecasts. Using the ground wind speed forecast data collected at the Boseong Meteorological Observation Tower, wind speed forecast values obtained by the numerical model are compared with those obtained by the model proposed in this study for the verification of the validity and compatibility of the proposed model.

카메라 모듈과 드론을 이용한 면적 자동 측정 프로그램 개발 (Development of a Pixel-based Area Measurement Program Using Drone and Camera Module)

  • 김정환;김식
    • 대한임베디드공학회논문지
    • /
    • 제14권3호
    • /
    • pp.157-163
    • /
    • 2019
  • As the drone industry has grown greatly in recent years, drones are being used or developed in many industrial fields such as image shooting, pesticide application, delivery service, food delivery etc. In this paper, therefore, we developed a program that takes a user's desired area at a certain height using a camera-equipped drone and obtains the area of the zone the user wants through image processing. The first user selects an area or a path. Afterwards, the drone flies and takes pictures, and then measures the user's needs. A digital image taken at a constant height and with the same resolution is composed of pixels, the area can be calculated easily if we know the number of pixels in the zone the user wants. Particularly, it is easy to calculate the area of various shaped zones, not terrain shapes such as triangles and squares. In addition, the total area of specific places of the entire zone can be calculated. With the program of this paper, anyone can easily calculate the area of the place the user wants using a drone rather than calculating the area through difficult formulas or specialized equipment.

관심 영역 추출과 영상 분할 지도를 이용한 딥러닝 기반의 이미지 검색 기술 (Deep Image Retrieval using Attention and Semantic Segmentation Map)

  • 유민정;조은혜;김병준;김선옥
    • 방송공학회논문지
    • /
    • 제28권2호
    • /
    • pp.230-237
    • /
    • 2023
  • 자율주행은 4차 산업의 핵심 기술로 차, 드론, 자동차, 로봇 등 다양한 곳에 응용 가능하다. 그 중 위치 추정 기술은 GPS, 센서, 지도 등을 활용하여, 객체나 사용자의 위치를 파악하는 기술로 자율주행을 구현하기 위한 핵심적인 기술 중 하나이다. GPS나 LIDAR 등의 센서를 이용하여 위치 추정이 가능하지만, 이는 매우 고가이고 무거운 장비를 탑재해야 하며 지하 혹은 터널 등 전파 방해가 있는 곳의 경우 정밀한 위치 추정이 어렵다는 단점이 있다. 본 논문에서는 이를 보완하기 위해 저가의 비전 카메라로 획득한 컬러 영상을 입력으로 하여 관심 영역 추출 네트워크와 영상 분할 지도를 이용한 영상 검색 기술을 제안한다.

드론기반 고속도로 교통조사분석 활용을 위한 기초연구 (Preliminary Study Related with Application of Transportation Survey and Analysis by Unmanned Aerial Vehicle(Drone))

  • 김수희;이재광;한동희;윤재용;정소영
    • 한국ITS학회 논문지
    • /
    • 제16권6호
    • /
    • pp.182-194
    • /
    • 2017
  • 그동안 교통관리에서 적용되던 드론 관련 연구는 도로나 차량을 검지하고 추적하는 연구가 대분이었다. 교통분야에서 영상이미지를 분석하는 목적은 기존 교통자료 수집체계(차량검지기, DSRC 등)의 한계를 극복하기 위함이다. 그런 의미에서 드론은 상당히 좋은 대안이나 최대 비행시간이 제한되어 있어 기존 수집체계를 대체하기 보다는 보완적 성격으로 활용되는 것이 타당하다. 따라서 교통조사분석을 위한 드론 활용방안에 대한 연구가 더 필요한 실정이다. 교통문제의 경우 특정 구간이나 지점에서 발생한 문제가 네트워크 전체로 확대되는 경우가 많아 드론을 이용하여 이러한 구간들에 대한 분석이 필요하다. 본 연구는 교통조사분석 활용을 위한 기초 연구로 드론으로 촬영된 고속도로 구간(800~1000m)을 단위 구간으로 분할하여 교통류 변수들을 추출하였다. 또한 영상기술의 발전으로 고고도에서 영상 촬영을 수행하였다.

How to utilize vegetation survey using drone image and image analysis software

  • Han, Yong-Gu;Jung, Se-Hoon;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • 제41권4호
    • /
    • pp.114-119
    • /
    • 2017
  • This study tried to analyze error range and resolution of drone images using a rotary wing by comparing them with field measurement results and to analyze stands patterns in actual vegetation map preparation by comparing drone images with aerial images provided by National Geographic Information Institute of Korea. A total of 11 ground control points (GCPs) were selected in the area, and coordinates of the points were identified. In the analysis of aerial images taken by a drone, error per pixel was analyzed to be 0.284 cm. Also, digital elevation model (DEM), digital surface model (DSM), and orthomosaic image were abstracted. When drone images were comparatively analyzed with coordinates of ground control points (GCPs), root mean square error (RMSE) was analyzed as 2.36, 1.37, and 5.15 m in the direction of X, Y, and Z. Because of this error, there were some differences in locations between images edited after field measurement and images edited without field measurement. Also, drone images taken in the stream and the forest and 51 and 25 cm resolution aerial images provided by the National Geographic Information Institute of Korea were compared to identify stands patterns. To have a standard to classify polygons according to each aerial image, image analysis software (eCognition) was used. As a result, it was analyzed that drone images made more precise polygons than 51 and 25 cm resolution images provided by the National Geographic Information Institute of Korea. Therefore, if we utilize drones appropriately according to characteristics of subject, we can have advantages in vegetation change survey and general monitoring survey as it can acquire detailed information and can take images continuously.

드론 영상 종합정보처리 및 분석용 시스템 개발 (Integrated Video Analytics for Drone Captured Video)

  • 임송원;조성만;박구만
    • 방송공학회논문지
    • /
    • 제24권2호
    • /
    • pp.243-250
    • /
    • 2019
  • 본 논문에서는 다양한 재난치안안전 임무 상황에서 적용할 수 있는 드론 영상 종합정보 처리 및 분석용 시스템을 제안한다. 제안하는 시스템은 드론에서 획득한 영상을 서버에 저장하고, 다양한 시나리오에 따른 영상 처리 및 분석을 수행한다. 각 임무에 따라 필요한 기능은 딥러닝을 활용하여 드론으로부터 확보하는 영상에서 영상분석 시스템을 구성한다. 실험 영상을 통해 교통량 측정, 용의자 및 차량 추적, 조난자 식별 및 해상 초계 임무에 적용할 수 있음을 확인했다. 드론 운용자가 임무에 따른 필요 기능을 선택하고 신속하게 대처할 수 있는 시스템을 구현하였다.

Smartphone-based structural crack detection using pruned fully convolutional networks and edge computing

  • Ye, X.W.;Li, Z.X.;Jin, T.
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.141-151
    • /
    • 2022
  • In recent years, the industry and research communities have focused on developing autonomous crack inspection approaches, which mainly include image acquisition and crack detection. In these approaches, mobile devices such as cameras, drones or smartphones are utilized as sensing platforms to acquire structural images, and the deep learning (DL)-based methods are being developed as important crack detection approaches. However, the process of image acquisition and collection is time-consuming, which delays the inspection. Also, the present mobile devices such as smartphones can be not only a sensing platform but also a computing platform that can be embedded with deep neural networks (DNNs) to conduct on-site crack detection. Due to the limited computing resources of mobile devices, the size of the DNNs should be reduced to improve the computational efficiency. In this study, an architecture called pruned crack recognition network (PCR-Net) was developed for the detection of structural cracks. A dataset containing 11000 images was established based on the raw images from bridge inspections. A pruning method was introduced to reduce the size of the base architecture for the optimization of the model size. Comparative studies were conducted with image processing techniques (IPTs) and other DNNs for the evaluation of the performance of the proposed PCR-Net. Furthermore, a modularly designed framework that integrated the PCR-Net was developed to realize a DL-based crack detection application for smartphones. Finally, on-site crack detection experiments were carried out to validate the performance of the developed system of smartphone-based detection of structural cracks.

Analysis of the Increase of Matching Points for Accuracy Improvement in 3D Reconstruction Using Stereo CCTV Image Data

  • Moon, Kwang-il;Pyeon, MuWook;Eo, YangDam;Kim, JongHwa;Moon, Sujung
    • 한국측량학회지
    • /
    • 제35권2호
    • /
    • pp.75-80
    • /
    • 2017
  • Recently, there has been growing interest in spatial data that combines information and communication technology with smart cities. The high-precision LiDAR (Light Dectection and Ranging) equipment is mainly used to collect three-dimensional spatial data, and the acquired data is also used to model geographic features and to manage plant construction and cultural heritages which require precision. The LiDAR equipment can collect precise data, but also has limitations because they are expensive and take long time to collect data. On the other hand, in the field of computer vision, research is being conducted on the methods of acquiring image data and performing 3D reconstruction based on image data without expensive equipment. Thus, precise 3D spatial data can be constructed efficiently by collecting and processing image data using CCTVs which are installed as infrastructure facilities in smart cities. However, this method can have an accuracy problem compared to the existing equipment. In this study, experiments were conducted and the results were analyzed to increase the number of extracted matching points by applying the feature-based method and the area-based method in order to improve the precision of 3D spatial data built with image data acquired from stereo CCTVs. For techniques to extract matching points, SIFT algorithm and PATCH algorithm were used. If precise 3D reconstruction is possible using the image data from stereo CCTVs, it will be possible to collect 3D spatial data with low-cost equipment and to collect and build data in real time because image data can be easily acquired through the Web from smart-phones and drones.

수중드론을 활용한 선박 선저검사용 수중 카메라 영상보정에 대한 연구 (A Study on Underwater Camera Image Correction for Ship Bottom Inspection Using Underwater Drone)

  • 하연철;박준모
    • 융합신호처리학회논문지
    • /
    • 제20권4호
    • /
    • pp.186-192
    • /
    • 2019
  • 일반적으로 운항 중인 선박이나 건조 중인 선박의 선저에는 많은 해양 생물들이 부착된다. 이러한 현상으로 인해 선박 표면의 거칠기가 증가하여 선박속도의 손실이 발생하게 되고 결과적으로 경제적 손실 및 환경오염 등의 발생을 초래하게 된다. 본 연구에서는 선박 선저에 부착된 해양생물 및 선저 상태를 검사하는 수중드론 등의 카메라 영상을 획득/활용한다. 획득된 해당 영상은 관리자 육안확인에 의해 해양 생물들에 따른 거칠기 등을 판단하게 된다. 이에 영상을 보정하는 필터 알고리즘을 원본 영상에 적용함으로써 해양 생물들 부착 여부 등에 대한 올바른 판단에 도움을 줄 수 있다. 수중 영상의 보정 알고리즘에는 다양한 필터가 필요하며, 어두운 수중 환경에 맞는 조명이 판단에 많은 영향을 미치므로 조명의 밝기 정도에 따른 해양 생물 부착 여부 판단에 대한 내용도 소개하고자 한다. 본 연구에서 적용된 보정 알고리즘 및 각 알고리즘별 조명 밝기에 따른 연구테스트 결과는 많은 분야에 적용 가능할 것으로 사료된다.