Journal of the Korea Institute of Building Construction
/
v.17
no.6
/
pp.545-557
/
2017
The study is about the efficient alternative to concrete surface in the field of visual inspection technology for deteriorated infrastructure. By combining industrial drones and deep learning based image analysis techniques with traditional visual inspection and research, we tried to reduce manpowers, time requirements and costs, and to overcome the height and dome structures. On board device mounted on drones is consisting of a high resolution camera for detecting cracks of more than 0.3 mm, a lidar sensor and a embeded image processor module. It was mounted on an industrial drones, took sample images of damage from the site specimen through automatic flight navigation. In addition, the damege parts of the site specimen was used to measure not only the width and length of cracks but white rust also, and tried up compare them with the final image analysis detected results. Using the image analysis techniques, the damages of 54ea sample images were analyzed by the segmentation - feature extraction - decision making process, and extracted the analysis parameters using supervised mode of the deep learning platform. The image analysis of newly added non-supervised 60ea image samples was performed based on the extracted parameters. The result presented in 90.5 % of the damage detection rate.
Background: Conventional bird observation methods are line survey or point count method by bare eyes or through binoculars or telescopes. But in this study, the possibility of monitoring waterbirds using drones beyond the conventional research methods was explored. It also describes the direction of producing and accumulating images of waterbird habitats as a method to efficiently determine changes in waterbird habitats. Results: From the study, it was concluded that waterbird monitoring using drones was a new monitoring technique which could be applied to the field and 26 kinds of waterbirds were observed. In the case of a drone with a single lens, it was difficult to identify objects because the size of the subject was too small at a certain altitude. In this case, zoom lens can be an alternative. It has also been verified that image analysis software can be used to accumulate images of waterbird habitats. Conclusions: If various kinds of advanced drones and cameras are used, it would be possible to monitor larger areas including the areas that are difficult for human access and to observe more waterbirds and wider habitats.
Young-Kyu Kim;Jin-Woung Jang;Jong-Hee Lee;Jong-Ho Yoo;Seungh Hyun Paik;Dae-Nyeon Kim
IEMEK Journal of Embedded Systems and Applications
/
v.18
no.2
/
pp.75-80
/
2023
Unmanned drone stations for automatic charging have been developed in order to overcome the flying time limitation of rotary wing drones. Since the drone stations is an unmanned operating system, each of the drones will be required to have a high degree of landing accuracy. Drone precision landing has been mainly studied depended on image processing technologies, but the image processing systems make several problems, such as the mission weight, the drone cost, and the development complexity increases, and the flight time decrease. Thus, this paper researched accuracy of precision landing based on RTK (real time kinetics) for rotary wing drones. For the experiments of RTK based precision landing, a drone repeatedly performed three missions. The survey accuracies of the RTK about missions respectively were set as 0.3, 0.2, and 0.1 meters. Each mission has one take-off point, two way-points and one landing-point, and was repeated ten times. The experiment results revealed landing error distance means of around 0.258, 0.12 and 0.057 meters on each of RTK setting.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2019.05a
/
pp.349-350
/
2019
The autonomous driving drones experimented in the existing indoor corridor environment was a way to give the steering command to the drones by the neural network operation of the notebook due to the limitation of the operation performance of the drones. In this paper, to overcome these limitations, we have studied autonomous driving in indoor corridor environment using NVIDIA Jetson TX2 board.
The Journal of the Korea institute of electronic communication sciences
/
v.13
no.1
/
pp.163-168
/
2018
With the advent of the fourth industrial revolution era, the use of drone has been progressing rapidly in various fields. Now the drones will be used extensively in the area of investigation. Until now the criminal photographs stayed in 2D digital images, it would be possible to reproduce not only 3D images but also make a crime scene with 3D printer. Firstly, the video images taken by the investigation agency using the drones are digital image evidence, and the requirements for securing the evidence capability are not different from the conditions for obtaining the proof of digital evidence. However, when the drones become a new area of scientific investigation, it is essential to systematize the authenticity of the images taken by the drones so that they can be used as evidence. In this paper, I propose a method to secure the evidence capability of digital images taken by drone.
Recently, the RPAS(Remote Piloted Aircraft System), by remote control and autonomous navigation, has been increasing in interest and utilization in various industries and public organizations along with delivery drones, fire drones, ambulances, agricultural drones, and others. The problems of the stability of unmanned drones, which can be self-controlled, are also the biggest challenge to be solved along the development of the drone industry. drones should be able to fly in the specified path the autonomous flight control system sets, and perform automatically an accurate landing at the destination. This study proposes a technique to check arrival by landing point images and control landing at the correct point, compensating for errors in location data of the drone sensors and GPS. Receiving from the Google Map API and learning from the destination video, taking images of the landing point with a drone equipped with a NAVIO2 and Raspberry Pi, camera, sending them to the server, adjusting the location of the drone in line with threshold, Drones can automatically land at the landing point.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.39
no.2
/
pp.81-91
/
2021
Drone related research has been increasing recently due to the development and distribution of commercial unmanned aerial vehicles. However, most of the previous studies focused on the accuracy and utility of drone surveying. For drones, the resolution of the result is determined according to the flight altitude, but since 70% of Korea is mountainous, it is necessary to analyze the quality of the drone image according to the flight plan. In this study, the quality of drone photogrammetry results according to flight plans was analyzed. The flight plan was established by fixed altitude and considering the height of the terrain. Images were acquired for both cases and data was processed to generate ortho images. As a result of evaluating the accuracy of the generated ortho image, the accuracy was found to be -0.07 ~ 0.09m. The accuracy of Case I and Case II did not show a significant difference, but for RMSE, Case I showed a good value. These results indicate that the drone flight plan affects the quality of the results. Also, when flying at a fixed altitude, II showed a lower value than the originally set overlap according to the altitude of the object. In future surveys using drones, flight planning taking into account the height of the object will contribute to the improvement of the quality of the results.
As drones gain more popularity these days, drone detection becomes more important part of the drone systems for safety, privacy, crime prevention and etc. However, existing drone detection systems are expensive and heavy so that they are only suitable for industrial or military purpose. This paper proposes a novel approach for training Convolutional Neural Networks to detect drones from images that can be used in embedded systems. Unlike previous works that consider the class probability of the image areas where the class object exists, the proposed approach takes account of all areas in the image for robust classification and object detection. Moreover, a novel loss function is proposed for the CNN to learn more effectively from limited amount of training data. The experimental results with various drone images show that the proposed approach performs efficiently in real drone detection scenarios.
Images taken from airplanes, satellites and drones have been used in various realms, and the kinds and specifications of images are enlarged gradually. Despite the importance of images on diverse applications, the quality information of the images is controlled by each agency or institute respectively without any principle, or even is neglected, because the application of standards to the final products of image is not easy in Korea. We aim to review necessities and strategies for applying international standards on image and to suggest potential issues and possibilities to make standards in action.
The Journal of the Convergence on Culture Technology
/
v.10
no.4
/
pp.639-644
/
2024
Recent developments in the use of drones on battlefields, extending beyond reconnaissance to firepower support, have greatly increased the importance of technologies for early automatic drone identification. In this study, to identify an effective image classification model that can distinguish drones from other aerial targets of similar size and appearance, such as birds and balloons, we utilized a dataset of 3,600 images collected from the internet. We adopted a transfer learning approach that combines the feature extraction capabilities of three pre-trained convolutional neural network models (VGG16, ResNet50, InceptionV3) with an additional classifier. Specifically, we conducted a comparative analysis of the performance of these three pre-trained models to determine the most effective one. The results showed that the InceptionV3 model achieved the highest accuracy at 99.66%. This research represents a new endeavor in utilizing existing convolutional neural network models and transfer learning for drone identification, which is expected to make a significant contribution to the advancement of drone identification technologies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.