• Title/Summary/Keyword: Drone stability

Search Result 50, Processing Time 0.022 seconds

Development of Simulator for Weight-Variable Type Drone Base on Kinetics (무게-가변형 드론을 위한 동역학 기반 시뮬레이터 개발)

  • Bai, Jin Feng;Kim, Jung Hwan;Kim, Shik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.3
    • /
    • pp.149-157
    • /
    • 2020
  • Regarding previously-developed drone simulators, it was easy to check their flight stability or controlling functions based on the condition that their weight was fixed from the design. However, the drone is largely classified into two types that is the one with the fixed weight whose purpose is recording video with camera and racing and another is whole weight-variable during flight with loading the articles for delivery and spraying pesticide though the weight of airframe is fixed. The purpose of this thesis is to analyze the structure of drone and its flight principle, suggest dynamics-model-based simulator that is capable of simulating weight-variable drone and develop the simulator that can be used for designing main control board, motor and transmission along the application of weight-variable drone. Weight-variable simulator was developed by using various calculation to apply flying method of drone to the simulator. First, ground coordinate system and airframe-fixing coordinate system were established and switching matrix of those two coordinates were made. Then, dynamics model of drone was established using the law of Newton and moment balance principle. Dynamics model was established in Simulink platform and simulation experiment was carried out by changing the weight of drone. In order to evaluate the validity of developed weight-variable simulator, it was compared to the results of clean flight public simulator against existing weight-fixed drone. Lastly, simulation test was performed with the developed weight-variable simulation by changing the weight of drone. It was found out that dynamics model controlled various flying positions of drone well from simulation and the possibility of securing the optimum condition of weight-variable drone that has flying stability and easiness of controlling.

Dynamic Surface Control Based Tracking Control for a Drone Equipped with a Manipulator (동적 표면 제어 기반의 매니퓰레이터 장착 드론의 추종 제어)

  • Lee, Keun-Uk;Choi, Yoon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1123-1130
    • /
    • 2017
  • This paper deals with the dynamic surface control based tracking control for a drone equipped with a 2-DOF manipulator. First, the dynamics of drone and 2-DOF manipulator are derived separately. And we obtain the combined model of a drone equipped with a manipulator considering the inertia and the reactive torque generated by a manipulator. Second, a dynamic surface control based attitude and altitude control method is presented. Also, multiple sliding mode control based position control method is presented. The system stability and convergence of tracking errors are proven using Lyapunov stability theory. Finally, the simulation results are given to verify the effectiveness of the proposed control method.

A Study on the Factors Affecting Drone Use Intention -Comparative analysis of Korea and United Kingdom

  • Park, Seo Youn
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.33-41
    • /
    • 2021
  • As interest in drones controlled by remote technology rapidly increases worldwide, drones are used in many fields such as military, rescue, and transportation as future innovations in many countries. In particular, as the drone has been spotlighted as a new future strategic industry, it is also used for public purposes such as disaster relief and crime investigation. However, security concerns such as the penetration of major national facilities, collisions with aircraft, and the possibility of privacy infringement due to aerial photography are also being raised. Unlike the increased interest in drones, there have been few studies on drone use, drone safety, and public attitudes toward drone use. This paper analyzed the perceptions of drone attitudes, drone stability and policy support for drones for Korean and United Kingdom.

Dual inertial measurement unit using Drone Control (이중 관성 측정 장치를 활용한 무인 항공기 제어)

  • Park, Se-il;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.227-229
    • /
    • 2016
  • Drone is demanding more than detaile hardware and software systems because Drone have characteristic flying. If Drone is a plane crash. they have risk of personal injury and property damage. now Drone control core system is preventing a plane crash and flight unsafe flying. The key is to help flying to convert for various external environment. This research prevent a plane crash that system planning to treat six-senser-figure doubly is IMU trouble or a trouble caused by a passing parameters and IMU install to help stability in flying.

  • PDF

A Collision Simulation Study on the Structural Stability for a Programmable Drone (충돌 시뮬레이션을 통한 코딩 교육용 드론의 구조적 안정성 연구)

  • Kim, Myung-Il;Jung, Dae-Yong;Kim, Su-Min;Lee, Jin-Kyu;Choi, Mun-Hyun;Kim, Ho-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.627-635
    • /
    • 2019
  • A programmable drone is a drone developed not only to experience the basic principles of flight but also to control drones through Arduino-based programming. Due to the nature of the training drones, the main users are students who are inexperienced in controlling the drones, which often cause frequent collisions with external objects, resulting in high damage to the drones' frame. In this study, the structural stability of the drone was evaluated by means of a structural dynamics based collision simulation for educational drone frame. Collision simulations were performed on three cases according to the impact angle of $0^{\circ}$, $+15^{\circ}$ and $-15^{\circ}$, using an analytical model with approximately 240,000 tetrahedron elements. Using ANSYS LS-DYNA, which provides excellent functions for the simulation of the dynamic behavior of three-dimensional structures, the stress distribution and strain generated on the drone upper, the drone lower, and the ring assembly were analyzed when the drones collided against the wall at a rate of 4 m/s. Safety factors resulting from the equivalent stress and the yield strain were calculated in the range of 0.72 to 2.64 and 1.72 to 26.67, respectively. To ensure structural stability for areas where stress exceeds yield strain and ultimate strain according to material properties, the design reinforcement is presented.

A study on Improving the Performance of Anti - Drone Systems using AI (인공지능(AI)을 활용한 드론방어체계 성능향상 방안에 관한 연구)

  • Hae Chul Ma;Jong Chan Moon;Jae Yong Park;Su Han Lee;Hyuk Jin Kwon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.126-134
    • /
    • 2023
  • Drones are emerging as a new security threat, and the world is working to reduce them. Detection and identification are the most difficult and important parts of the anti-drone systems. Existing detection and identification methods each have their strengths and weaknesses, so complementary operations are required. Detection and identification performance in anti-drone systems can be improved through the use of artificial intelligence. This is because artificial intelligence can quickly analyze differences smaller than humans. There are three ways to utilize artificial intelligence. Through reinforcement learning-based physical control, noise and blur generated when the optical camera tracks the drone may be reduced, and tracking stability may be improved. The latest NeRF algorithm can be used to solve the problem of lack of enemy drone data. It is necessary to build a data network to utilize artificial intelligence. Through this, data can be efficiently collected and managed. In addition, model performance can be improved by regularly generating artificial intelligence learning data.

Portable-size Drone Design Using TRIZ Method (TRIZ 기법을 통한 휴대가 용이한 Drone 설계)

  • Kim, Jong Hyeong;Kim, Hyung-jik;Jung, Jae Nam;Jang, Dong-hee;Kwon, Hyuk-dong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.230-237
    • /
    • 2017
  • Various drones have extended application area very fast. In this paper, we define two contradictions in designing a portable-size drone by using TRIZ technique. The first is a physical contradiction between high rigidity and good portability, and the second is a technical contradiction between high stability and good portability. Through TRIZ technique, six design principles, which guide direction for optimal design, were driven. Consequently, an umbrella mechanism and design criteria were proposed for a portable-size drone. Detail design is verified through finite element method. Test results for the portable-size prototype drone show good performance, and prove its usefulness to be equivalent to a general full-size drone.

Mechanism Development and Heading Control of Catamaran-type Sail Drone

  • Man, Dong-Woo;Kim, Hyun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.360-368
    • /
    • 2021
  • The need for energy harvesting in marine environments is gradually increasing owing to the energy limitation of marine robots. To address this problem, a catamaran-type sail drone (CSD), which can harvest marine energies such as wind and solar, was proposed in a previous study. However, it was designed and manufactured without considering the stability, optimal hull-form, and maintenance. To resolve these problems, a CSD with two keels, a performance estimator, V-shape hulls, and modularized components is proposed and its mechanism is developed in this study. To verify the performance of the CSD, the performance estimation using smoothed-particle hydrodynamics (SPH) and the heading control using fuzzy logic controller (FLC) are performed. Simulation results show the attitude stability of the CSD and the experimental results show the straight path of the CSD according to wind conditions. Therefore, the CSD has potential applications as an energy harvesting system.

A Study on Mapping Levees Using Drone Imagery (드론영상을 이용한 하천 제방 매핑에 관한 연구)

  • Choung, Yun-Jae;Park, Hyeon-Cheol;Choi, Soo-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.30-30
    • /
    • 2018
  • Research on mapping levees is an important task for assessing levee stability. The drone imagery acquired in river basins is useful for generating real-time levee maps. This research proposes a robust methodology for mapping levees in river basins using the drone imagery. In the first step, the multiple imagery taken in the test bed was acquired by the drone. Then, the orthorectified image and DEM (Digital Elevation Model) were generated by the photogrammetry and image processing process. Finally, the significant features on levee surfaces such as levee tops, levee lines, levee slopes, eroded areas were detected from the generated DEM and orthorectified image by manual labors and automatic methods. In future research, the automatic procedure for identifying the significant levee features from the drone imagery would be proposed.

  • PDF

Identification of key elements for stable flight of drones and horizontal space compartment in urban area (드론의 안정적 비행을 위한 핵심요소와 도시 수평 공간 구획)

  • Kim, Jung-Hoon;Kim, Hong-Bae
    • Journal of Korea Planning Association
    • /
    • v.53 no.7
    • /
    • pp.39-48
    • /
    • 2018
  • The purpose of this study is to verify the stable flight conditions of drones within a limited urban area by using the ICAO(International Civil Aviation Organization) reich model which is using to evaluate civil aircraft stability. The results of the study are summarized as follows. First, in order for the drones flying stably, the horizontal safety separation distance between a drone and another should be at least 1,852M. Second, assuming that no obstacles within 1,852M of horizontal space, two drones can be fly into upper and lower spaces. However there are obstacles such as buildings, it is impossible to secure a 1,852M distance between drones. Third, sensitivity analysis point out that the separation interval($s_x$) of drone aviation has the greatest influence on the TLS(Target Level of Safety). If future research is conducted to lower the numerical values, the safety distance between a drone and another drone will be drastically reduced, allowing more detailed urban space division, and will be presented as a scientific numerical value for establishing a dedicated path for the drones.