• Title/Summary/Keyword: Drone safety

Search Result 194, Processing Time 0.025 seconds

A study on the degree of aging recognition of firefighters and countermeasures(focus on firefighters in Jeollanam-do) (소방공무원의 고령화 인식정도와 대응방안에 관한 연구(전라남도 소방공무원을 중심으로))

  • Ha, Kang Hun;Kim, Jae Ho;Choi, Jae Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.398-407
    • /
    • 2021
  • Firefighters (who are responsible for people's safety) have one of the jobs that are expected to have problems due to aging in the workforce. An increase in the average age of firefighters can lead to serious social problems. The aim of this study is to survey firefighters in Jeollanam-do about their awareness of aging in firefighters, and to propose a plan to prepare them for aging through investigation and analysis of work problems that may occur due to an aging workforce. The survey shows that the higher the age group, the higher the awareness of aging firefighters, and the higher the total work experience and internal/external work experience, the higher the awareness of aging. As a plan to solve various problems that may arise from aging in firefighters, regular operation of physical fitness promotion programs, field work, job rotation, and managerial measures (such as a change of position to an administrative department) are prepared, and drone or robot technology is used. These solutions include the introduction of applied high-tech technologies to firefighting activities, establishment of retirement management policies, and preparation of plans to revitalize the connection to private employment. In order to maximize the applicability of the field, government institutional plans and preparations are essential.

Height Determination Using Vanishing Points of a Single Camera for Monitoring of Construction Site (건설현장 모니터링을 위한 단안 카메라 기반의 소실점을 이용한 높이 결정)

  • Choi, In-Ha;So, Hyeong-Yoon;Kim, Eui-Myoung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.2
    • /
    • pp.73-82
    • /
    • 2021
  • According to the government's announcement of the safety management enhancement policy for small and medium-sized private construction sites, the subject of mandatory CCTV installation has been expanded from large construction sites to small and medium-sized construction sites. However, since the existing CCTV at construction sites has been used for simple control for safety management, so research is needed for monitoring of construction sites. Therefore, in this study, three vanishing points were calculated based on a single image taken with a monocular camera, and then a camera matrix containing interior orientation parameters information was determined. And the accuracy was verified by calculating the height of the target object from the height of the reference object. Through height determination experiments using vanishing points based on a monocular camera, it was possible to determine the height of target objects only with a single image without separately surveying of ground control points. As a result of the accuracy evaluation, the root mean square error was ±0.161m. Therefore, it is determined that the progress of construction work at the construction sites can be monitored through the single image taken using the single camera.

Fabrication of Three-Dimensional Scanning System for Inspection of Mineshaft Using Multichannel Lidar (다중채널 Lidar를 이용한 수직갱도 조사용 3차원 형상화 장비 구현)

  • Soolo, Kim;Jong-Sung, Choi;Ho-Goon, Yoon;Sang-Wook, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.451-463
    • /
    • 2022
  • Whenever a mineshaft accidentally collapses, speedy risk assessment is both required and crucial. But onsite safety diagnosis by humans is reportedly difficult considering the additional risk of collapse of the unstable mineshaft. Generally, drones equipped with high-speed lidar sensors can be used for such inspection. However, the drone technology is restrictively applicable at very shallow depth, failing in mineshafts with depths of hundreds of meters because of the limit of wireless communication and turbulence inside the mineshaft. In previous study, a three-dimensional (3D) scanning system with a single channel lidar was fabricated and operated using towed cable in a mineshaft to a depth of 200 m. The rotation and pendulum movement errors of the measuring unit were compensated for by applying the data of inertial measuring unit and comparing the similarity between the scan data of the adjacent depths (Kim et al., 2020). However, the errors grew with scan depth. In this paper, a multi-channel lidar sensor to obtain a continuous cross-sectional image of the mineshaft from a winch system pulled from bottom upward. In this new approach, within overlapped region viewed by the multi-channel lidar, rotation error was compensated for by comparing the similarity between the scan data at the same depth. The fabricated system was applied to scan 0-165 m depth of the mineshaft with 180 m depth. The reconstructed image was depicted in a 3D graph for interpretation.

A Study on Analysis of Construction Monitoring Cost and Improvement Measures of Railway Tunnel Construction in Seoul (서울시 철도터널 건설공사의 공사계측비 분석 및 개선방안 연구)

  • Jong-Tae Woo
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.18-30
    • /
    • 2023
  • Purpose: This study is to contribute to the development of monitoring technology through the increase of confidence in construction monitoring by deriving the analysis of construction monitoring cost and improvement measures of railway tunnel construction in Seoul. Method: It presents the status on design and contract of construction monitoring cost, status on application construction monitoring cost and its analysis, analysis on safety management cost and quality management cost, expansion of application of the price calculation standard for monitoring management services to improve this, and monitoring for direct order of ordering organization. Results: If the monitoring management service that was meanwhile ordered as included in the construction work is performed by the directly selected company of ordering organization through the preliminary screening for bidding qualification, then the improvement of monitoring quality and the accurate monitoring data can be secured. Conclusion: For the price calculation standard for monitoring management service, the application of actual cost addition method under the Engineering Promotion Act and the calculation standard of monitoring management cost for standard estimation for ground survey should be extended through the direct order of ordering organization, not the method to be included in the net construction cost where it is performed by a subcontractor via contractor.

A Study on the Australian Law Regarding RPAS (Remotely Piloted Aircraft System): Need for an International Approach

  • Wheeler, Joseph;Lee, Jae-Woon
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.2
    • /
    • pp.311-336
    • /
    • 2015
  • This article surveys the current international law with respect to RPAS from both the public air law and private air law perspectives. It then reviews current and proposed Australian domestic RPAS regulation while emphasizing the peculiar risks in operation of RPAS; and how they affect concepts of liability, safety and privacy. While RPAS operations still constitute only a small portion of total operations within commercial aviation, international pilotless flight for commercial air transport remains a future reality. As the industry is developing so quickly the earlier the pursuit of the right policy solutions begins, the better the law will be able to cope with the technological realities when the inevitable risks manifest in accidents. The paper acknowledges that a domestic or regional approach to RPAS, typified by the legislative success of the Australian experience, is and continues to be the principal measure to deal with RPAS issues globally. Furthermore, safety remains the foremost factor in present and revised Australian RPAS regulation. This has an analogue to the international situation. Creating safety-related rules is imperative and must precede the creation or adoption of liability rules because the former mitigates the risk of accidents which trigger the application of the latter. The flipside of a lack of binding airworthiness standards for RPAS operators is potentially a strong argument that the liability regime (and particularly strict liability of operators) is unfair and unsuited to pilotless flight. The potential solutions the authors raise include the need for revised ICAO guidance and, in particular, SARPs with respect to RPAS air safety, airworthiness, and potentially liability issues for participants/passengers, and those on the ground. Such guidance could then be adapted swiftly for appropriate incorporation into domestic laws bypassing the need for or administrative burden and time it would take to activate the treaty process to deal with an arm of aviation that states know all too well is in need of safety regulation and monitoring.

A Study on the infringement of privacy of unmanned aircraft : Focusing on the analysis of legislation and US policy (무인항공기의 사생활 침해에 대한 법적 대응 : 미국 정책.입법안 분석을 중심으로)

  • Kim, Sun-Ihee
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.29 no.2
    • /
    • pp.135-161
    • /
    • 2014
  • An unmanned aerial vehicle (UAV), commonly known as a drone and also referred to as an unpiloted aerial vehicle and a remotely piloted aircraft (RPA) by the International Civil Aviation Organization (ICAO), is an aircraft without a human pilot aboard. ICAO classify unmanned aircraft into two types under Circular 328 AN/190. Unmanned aircraft, which is the core of the development of the aviation industry. However, there are also elements of the legal dispute. Unmanned aircraft are manufactured in small size, it is possible to shoot a record peripheral routes stored in high-performance cameras and sensors without the consent of the citizens, there is a risk of invasion of privacy. In addition, the occurrence of the people of invasion of privacy is expected to use of civilian unmanned aircraft. If the exposure of private life that people did not want for unmanned aircraft has occurred, may occur liability to the operator of unmanned aircraft, this is a factor to be taken into account for the development of unmanned aircraft industry. In the United States, which is currently led by the unmanned aircraft industry, policy related to unmanned aircraft, invasion of privacy is under development, is preparing an efficient measures making. Unmanned aircraft special law has not been enforced. So there is a need for legal measures based on infringement of privacy by the unmanned aircraft. US was presented Privacy Protection Act of unmanned aircraft (draft). However Korea has many laws have been enacted, to enact a new law, but will be able to harm the legal stability, there is a need for the enactment of laws for public safety of life. Although in force Personal Information Protection Law, unmanned aerospace, when the invasion of privacy occurs, it is difficult to apply the Personal Information Protection Law. So, it was presented a privacy protection bill with infringement of privacy of unmanned aircraft in the reference US legislation and the Personal Information Protection Act.

Convergence of Remote Sensing and Digital Geospatial Information for Monitoring Unmeasured Reservoirs (미계측 저수지 수체 모니터링을 위한 원격탐사 및 디지털 공간정보 융합)

  • Hee-Jin Lee;Chanyang Sur;Jeongho Cho;Won-Ho Nam
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1135-1144
    • /
    • 2023
  • Many agricultural reservoirs in South Korea, constructed before 1970, have become aging facilities. The majority of small-scale reservoirs lack measurement systems to ascertain basic specifications and water levels, classifying them as unmeasured reservoirs. Furthermore, continuous sedimentation within the reservoirs and industrial development-induced water quality deterioration lead to reduced water supply capacity and changes in reservoir morphology. This study utilized Light Detection And Ranging (LiDAR) sensors, which provide elevation information and allow for the characterization of surface features, to construct high-resolution Digital Surface Model (DSM) and Digital Elevation Model (DEM) data of reservoir facilities. Additionally, bathymetric measurements based on multibeam echosounders were conducted to propose an updated approach for determining reservoir capacity. Drone-based LiDAR was employed to generate DSM and DEM data with a spatial resolution of 50 cm, enabling the display of elevations of hydraulic structures, such as embankments, spillways, and intake channels. Furthermore, using drone-based hyperspectral imagery, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) were calculated to detect water bodies and verify differences from existing reservoir boundaries. The constructed high-resolution DEM data were integrated with bathymetric measurements to create underwater contour maps, which were used to generate a Triangulated Irregular Network (TIN). The TIN was utilized to calculate the inundation area and volume of the reservoir, yielding results highly consistent with basic specifications. Considering areas that were not surveyed due to underwater vegetation, it is anticipated that this data will be valuable for future updates of reservoir capacity information.

The Design of the Obstacle Avoidances System for Unmanned Vehicle Using a Depth Camera (깊이 카메라를 이용한 무인이동체의 장애물 회피 시스템 설계)

  • Kim, Min-Joon;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.224-226
    • /
    • 2016
  • With the technical development and rapid increase of private demand, the new market for unmanned vehicle combined with the characteristics of 'unmanned automation' and 'vehicle' is rapidly growing. Even though the pilot driving is currently allowed in some countries, there is no country that has institutionalized the formal driving of self-driving cars. In case of the existing vehicles, safety incidents are frequently happening due to the frequent malfunction of the rear sensor, blind spot of the rear camera, or drivers' carelessness. Once such minor flaws are complemented, the relevant regulations for the commercialization of self-driving car and small drone could be relieved. Contrary to the ultrasonic and laser sensors used for the existing vehicles, this paper aims to attempt the distance measurement by using the depth sensor. A depth camera calculates the distance data based on the TOF method calculating the time difference by lighting laser or infrared light onto an object or area and then receiving the beam coming back. As this camera can obtain the depth data in the pixel unit of CCD camera, it can be used for collecting depth data in real-time. This paper suggests to solve problems mentioned above by using depth data in real-time and also to design the obstacle avoidance system through distance measurement.

  • PDF

Application and Analysis of Remote Sensing Data for Disaster Management in Korea - Focused on Managing Drought of Reservoir Based on Remote Sensing - (국가 재난 관리를 위한 원격탐사 자료 분석 및 활용 - 원격탐사기반 저수지 가뭄 관리를 중심으로 -)

  • Kim, Seongsam;Lee, Junwoo;Koo, Seul;Kim, Yongmin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1749-1760
    • /
    • 2022
  • In modern society, human and social damages caused by natural disasters and frequent disaster accidents have been increased year by year. Prompt access to dangerous disaster sites that are inaccessible or inaccessible using state-of-the-art Earth observation equipment such as satellites, drones, and survey robots, and timely collection and analysis of meaningful disaster information. It can play an important role in protecting people's property and life throughout the entire disaster management cycle, such as responding to disaster sites and establishing mid-to long-term recovery plans. This special issue introduces the National Disaster Management Research Institute (NDMI)'s disaster management technology that utilizes various Earth observation platforms, such as mobile survey vehicles equipped with close-range disaster site survey sensors, drones, and survey robots, as well as satellite technology, which is a tool of remote earth observation. Major research achievements include detection of damage from water disasters using Google Earth Engine, mid- and long-term time series observation, detection of reservoir water bodies using Sentinel-1 Synthetic Aperture Radar (SAR) images and artificial intelligence, analysis of resident movement patterns in case of forest fire disasters, and data analysis of disaster safety research. Efficient integrated management and utilization plan research results are summarized. In addition, research results on scientific investigation activities on the causes of disasters using drones and survey robots during the investigation of inaccessible and dangerous disaster sites were described.

Survey of coastal topography using images from a single UAV (단일 UAV를 이용한 해안 지형 측량)

  • Noh, Hyoseob;Kim, Byunguk;Lee, Minjae;Park, Yong Sung;Bang, Ki Young;Yoo, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1027-1036
    • /
    • 2023
  • Coastal topographic information is crucial in coastal management, but point measurment based approeaches, which are labor intensive, are generally applied to land and underwater, separately. This study introduces an efficient method enabling land and undetwater surveys using an unmanned aerial vehicle (UAV). This method involves applying two different algorithms to measure the topography on land and water depth, respectively, using UAV imagery and merge them to reconstruct whole coastal digital elevation model. Acquisition of the landside terrain is achieved using the Structure-from-Motion Multi-View Stereo technique with spatial scan imagery. Independently, underwater bathymetry is retrieved by employing a depth inversion technique with a drone-acquired wave field video. After merging the two digital elevation models into a local coordinate, interpolation is performed for areas where terrain measurement is not feasible, ultimately obtaining a continuous nearshore terrain. We applied the proposed survey technique to Jangsa Beach, South Korea, and verified that detailed terrain characteristics, such as berm, can be measured. The proposed UAV-based survey method has significant efficiency in terms of time, cost, and safety compared to existing methods.