The purpose of this study is to show the possibility of 3-dimensional modeling of open-pit limestone mine by using a rotary-wing unmanned aerial vehicle, a drone, and to estimate the amount of mining before and after mining of limestone by explosive blasting. Analysis of the image duplication of the mine has shown that it is possible to achieve high image quality. Analysis of each axis error at the shooting position after analyzing the distortions through camera calibration was shown the allowable range. As a result of estimating the amount of mining before and after explosive blasting, it was possible to estimate the amount of mining of a wide range quickly and accurately in a relatively short time. In conclusion, it is considered that the drone of a rotary-wing unmanned aerial vehicle can be usefully used for the monitoring of open-pit limestone mines and the estimation of the amount of mining. Furthermore, it is expected that this method will be utilized for periodic monitoring of construction sites and road slopes as well as open-pit mines in the future.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.39
no.3
/
pp.203-209
/
2021
With the recent development of satellite sensor technology, high-spatial-resolution imagery of various spectral wavelength bands have become possible. Worldview-3 satellite sensor provides panchromatic images with high-spatial-resolution and VNIR (Visible Near InfraRed) and SWIR (ShortWave InfraRed) bands with low-spatial-resolution, so it can be used in various fields such as defense, environment, and surveying. In this study, mineral detection was performed using Worldview-3 satellite imagery. In order to effectively utilize the VNIR and SWIR bands of the Worldview-3 satellite image, the sharpening technique was applied to the spatial resolution of the panchromatic image. To confirm the utility of SWIR bands for mineral detection, mineral detection using only VNIR bands was performed and comparatively evaluated. As the mineral detection technique, SAM (Spectral Angle Mapper), a representative similarity technique, was applied, and the pixels detected as minerals were selected by applying an empirical threshold to the analysis result. Quantitative evaluation was performed using reference data on the results of similarity analysis to evaluate the accuracy of mineral detection. As a result of the accuracy evaluation, the detection rate and false detection rate of mineral detecting using SWIR bands were calculated to be 0.882 and 0.011, respectively, and the results using only VNIR bands were 0.891 and 0.037, respectively. It was found that the detection rate when the SWIR bands were additionally used was lower than that when only the VNIR bands were used. However, it was found that the false detection rate was significantly reduced, and through this, it was possible to confirm the applicability of SWIR bands in mineral detection.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.40
no.1
/
pp.15-22
/
2022
In order to improve the accuracy of the deep learning object detection technique, the effect of magnification rate conditions and seasonal factors on detection accuracy in aerial photographs and drone images was analyzed through experiments. Among the deep learning object detection techniques, Mask R-CNN, which shows fast learning speed and high accuracy, was used to detect the vehicle to be detected in pixel units. Through Seoul's aerial photo service, learning images were captured at different screen magnifications, and the accuracy was analyzed by learning each. According to the experimental results, the higher the magnification level, the higher the mAP average to 60%, 67%, and 75%. When the magnification rates of train and test data of the data set were alternately arranged, low magnification data was arranged as train data, and high magnification data was arranged as test data, showing a difference of more than 20% compared to the opposite case. And in the case of drone images with a seasonal difference with a time difference of 4 months, the results of learning the image data at the same period showed high accuracy with an average of 93%, confirming that seasonal differences also affect learning.
KSCE Journal of Civil and Environmental Engineering Research
/
v.42
no.2
/
pp.291-298
/
2022
Recently developed drones are inexpensive and very convenient to operate. As a result, the production and utilization of spatial information using drones are increasing. However, most drones acquire images with a low-cost global navigation satellite system (GNSS) and an inertial measurement unit (IMU). Accordingly, the accuracy of the initial location and rotation angle elements of the image is low. In addition, because these drones are small and light, they can be greatly affected by wind, making it difficult to maintain a certain overlap, which degrades the positioning accuracy. Therefore, in this study, images are taken at different times in order to analyze the positioning accuracy according to changes in certain exterior orientation parameters. To do this, image processing was performed with Pix4D Mapper and the accuracy of the results was analyzed. In order to analyze the variation of the accuracy according to the exterior orientation parameters in detail, the exterior orientation parameters of the first processing result were used as meta-data for the second processing. Subsequently, the amount of change in the exterior orientation parameters was analyzed by in a strip-by-strip manner. As a result, it was proved that the changes of the Omega and Phi values among the rotation elements were related to a decrease in the height accuracy, while changes in Kappa were linked to the horizontal accuracy.
Journal of the Korea Institute of Building Construction
/
v.17
no.6
/
pp.545-557
/
2017
The study is about the efficient alternative to concrete surface in the field of visual inspection technology for deteriorated infrastructure. By combining industrial drones and deep learning based image analysis techniques with traditional visual inspection and research, we tried to reduce manpowers, time requirements and costs, and to overcome the height and dome structures. On board device mounted on drones is consisting of a high resolution camera for detecting cracks of more than 0.3 mm, a lidar sensor and a embeded image processor module. It was mounted on an industrial drones, took sample images of damage from the site specimen through automatic flight navigation. In addition, the damege parts of the site specimen was used to measure not only the width and length of cracks but white rust also, and tried up compare them with the final image analysis detected results. Using the image analysis techniques, the damages of 54ea sample images were analyzed by the segmentation - feature extraction - decision making process, and extracted the analysis parameters using supervised mode of the deep learning platform. The image analysis of newly added non-supervised 60ea image samples was performed based on the extracted parameters. The result presented in 90.5 % of the damage detection rate.
In urgent situations such as disasters and accidents, rapid data acquisition and processing is required. Therefore, in this study, a rapid geocoding method according to EOP (Exterior Orientation Parameter) correction was proposed through pattern analysis of the initial UAV image information. As a result, in the research area with a total flight length of 1.3 km and a width of 0.102 ㎢, the generation time of geocoding images took about 5 to 10 seconds per image, showing a position error of about 8.51 m. It is believed that the use of the rapid geocoding method proposed in this study will help provide basic data for on-site monitoring and decision-making in emergency situations such as disasters and accidents.
Purpose: In this study, a model was developed to estimate the storage in Cheonan reservoir using images taken by Sentinel-1 satellite. Method: A total of three reservoirs were studied. All three reservoirs are small reservoirs whose water level is being measured. The preprocessing of Sentinel-1 images was done using SNAP distributed by the European Space Agency(ESA), and the storage was estimated by classifying water surface by the threshold classification method. The estimated reservoir area was compared with satellite and drones images taken on the same day. The correlation was derived by comparing the estimated reservoir area with the actual measurement. Results and Conclusions: The storage values estimated by satellite image analysis showed similar values to the actual measurement data. However, because of the underestimation of the reservoir area due to green algae and Epilithic diatom of summer reservoirs and the low resolution of satellite images, it is dificult to detect reservoir area by satellite images less than 10,000㎡.
Journal of the Institute of Convergence Signal Processing
/
v.21
no.2
/
pp.92-100
/
2020
Currently, the demand for underwater or underwater photography is growing very fast. Its coverage of underwater shooting for broadcasting, leisure and sports, and military and operational use is also growing rapidly. Among them, we specifically select the best camera to be used in underwater drones to photograph and inspect marine life attached to the ship's hull. To compare three cameras performance, they are compared and evaluated using objective and subjective criteria in special circumstances such as underwater shooting. This study checks whether performance criteria, such as resolution of a camera, meet objective and subjective standards in the unusual situation of underwater shooting. And it shows that in addition to the filter that calibrates the image, proper camera selection is important for providing good picture quality. Even after this study, research using more diverse cameras could provide an appropriate standard for comparison of underwater camera quality.
Journal of the Korean Association of Geographic Information Studies
/
v.25
no.4
/
pp.151-162
/
2022
Recently, the forests in Korea have accumulated damage due to continuous forest disasters, and the need for technologies to monitor forest managements is being issued. The size of the affected area is large terrain, technologies using drones, artificial intelligence, and big data are being studied. In this study, a standard dataset were conducted to develop an algorithm that automatically detects suspicious trees damaged by forest pests using deep learning and drones. Experiments using the YOLO model among object detection algorithm models, the YOLOv4-P7 model showed the highest recall rate of 69.69% and precision of 69.15%. It was confirmed that YOLOv4-P7 should be used as an automatic detection algorithm model for trees suspected of being damaged by forest pests, considering the detection target is an ortho-image with a large image size.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.35
no.6
/
pp.517-526
/
2017
In this study, we analyzed the accuracy of elevation, slope, and area to the damage scale of the debris flow using the drones to track the details of the debris flow that method was between the digital topographical map(1/5,000) method and GPS ground survey method. The results are summarized as follows. At first, in the comparison of elevation, the value by the drones was 3.024m lower than the digital topography map, but in case of slope the average slope was $1.20^{\circ}$ and the maximum slope was $10.46^{\circ}$ which was higher by the drones image. Secondly, the difference area is $462m^2$ between on the digital topographic map and the drones image was calculated high, because it is determined by reflecting the uplift of the terrain as a point that calculated more accurate than the digital topographic map. Therefore, when compared with the existing method, the drone image method was very effective in terms of time and manpower.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.