• Title/Summary/Keyword: Drone detection

Search Result 184, Processing Time 0.025 seconds

Development of Animal Tracking Method Based on Edge Computing for Harmful Animal Repellent System. (엣지컴퓨팅 기반 유해조수 퇴치 드론의 동물 추적기법 개발)

  • Lee, Seul;Kim, Jun-tae;Lee, Sang-Min;Cho, Soon-jae;Jeong, Seo-hoon;Kim, Hyung Hoon;Shim, Hyun-min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.224-227
    • /
    • 2020
  • 엣지컴퓨팅 기반 유해조수 퇴치 Drone의 유해조수 추적 기술은 Doppler Sensor를 이용해 사유지에 침입한 유해조수를 인식 후 사용자에게 위험 요소에 대한 알림 서비스를 제공한다. 이후 사용자는 Drone의 Camera와 전용 애플리케이션을 이용해 경작지를 실시간으로 보며 Drone을 조종한다. Camera는 Tensor Flow Object Detection Deep Learning을 적용하여 유해조수를 학습 및 파악, 추적한다. 이후 Drone은 Speaker와 Neo Pixel LED Ring을 이용해 유해조수의 시각과 청각을 자극해 도망을 유도하며 퇴치한다. Tensor Flow object detection을 핵심으로 Drone에 접목했고 이를 위해 전용 애플리케이션을 개발했다.

Analysis of Drone Target Search Performance According to Environment Change

  • Lim, Jong-Bin;Ha, Il-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1178-1186
    • /
    • 2019
  • In recent years, interest in drones has grown, and many countries are developing them into a strategic industry of the future. Drones are not only used in industries such as logistics and agriculture but also in various public sectors such as life rescue, disaster investigation, traffic control, and firefighting. One of the most important tasks of a drone is to accurately identify targets in these applications. Target recognition may vary depending on the search environment of the drone. Therefore, this study tests and analyzes the drone's target recognition performance according to changes in the search environment such as the search altitude and the search angle. In addition, we propose a new algorithm that improves upon the disadvantages of the Haar cascade method, which is the existing algorithm that recognizes the target by analyzing a captured image.

Damaged cable detection with statistical analysis, clustering, and deep learning models

  • Son, Hyesook;Yoon, Chanyoung;Kim, Yejin;Jang, Yun;Tran, Linh Viet;Kim, Seung-Eock;Kim, Dong Joo;Park, Jongwoong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.17-28
    • /
    • 2022
  • The cable component of cable-stayed bridges is gradually impacted by weather conditions, vehicle loads, and material corrosion. The stayed cable is a critical load-carrying part that closely affects the operational stability of a cable-stayed bridge. Damaged cables might lead to the bridge collapse due to their tension capacity reduction. Thus, it is necessary to develop structural health monitoring (SHM) techniques that accurately identify damaged cables. In this work, a combinational identification method of three efficient techniques, including statistical analysis, clustering, and neural network models, is proposed to detect the damaged cable in a cable-stayed bridge. The measured dataset from the bridge was initially preprocessed to remove the outlier channels. Then, the theory and application of each technique for damage detection were introduced. In general, the statistical approach extracts the parameters representing the damage within time series, and the clustering approach identifies the outliers from the data signals as damaged members, while the deep learning approach uses the nonlinear data dependencies in SHM for the training model. The performance of these approaches in classifying the damaged cable was assessed, and the combinational identification method was obtained using the voting ensemble. Finally, the combination method was compared with an existing outlier detection algorithm, support vector machines (SVM). The results demonstrate that the proposed method is robust and provides higher accuracy for the damaged cable detection in the cable-stayed bridge.

The Fabrication of Compact Active Array Antenna for Drone Detection Radar (드론 탐지 레이다용 위상배열안테나 설계 및 구현)

  • Lim, Jae-Hwan;Jin, Hyoung-Suk;Lee, Jong-Hyun
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.703-709
    • /
    • 2021
  • As drone technology advances, the risks of drones are increasing, then technology to detect drones is becoming important. In this thesis, it was verified that miniaturized and lightweighted active array antenna could be used for radar system to detect drones in reality. The transmit-receive module was designed in the form of tile-type to simplify interconnections between devices. The waveform generation module and the down conversion module were miniaturized to include in one body too. As a result of verifing the detection performance through test, it was confirmed that the detection range was over 3.7Km.

Deep Learning-Based Roundabout Traffic Analysis System Using Unmanned Aerial Vehicle Videos (드론 영상을 이용한 딥러닝 기반 회전 교차로 교통 분석 시스템)

  • Janghoon Lee;Yoonho Hwang;Heejeong Kwon;Ji-Won Choi;Jong Taek Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.125-132
    • /
    • 2023
  • Roundabouts have strengths in traffic flow and safety but can present difficulties for inexperienced drivers. Demand to acquire and analyze drone images has increased to enhance a traffic environment allowing drivers to deal with roundabouts easily. In this paper, we propose a roundabout traffic analysis system that detects, tracks, and analyzes vehicles using a deep learning-based object detection model (YOLOv7) in drone images. About 3600 images for object detection model learning and testing were extracted and labeled from 1 hour of drone video. Through training diverse conditions and evaluating the performance of object detection models, we achieved an average precision (AP) of up to 97.2%. In addition, we utilized SORT (Simple Online and Realtime Tracking) and OC-SORT (Observation-Centric SORT), a real-time object tracking algorithm, which resulted in an average MOTA (Multiple Object Tracking Accuracy) of up to 89.2%. By implementing a method for measuring roundabout entry speed, we achieved an accuracy of 94.5%.

MTD (Moving Target Detection) with Preposition Hash Table for Security of Drone Network (드론 네트워크 보안을 위한 해시표 대체 방식의 능동 방어 기법)

  • Leem, Sungmin;Lee, Minwoo;Lim, Jaesung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.477-485
    • /
    • 2019
  • As the drones industry evolved, the security of the drone network has been important. In this paper, MTD (Moving Target Detection) technique is applied to the drone network for improving security. The existing MTD scheme has a risk that the hash value is exposed during the wireless communication process, and it is restricted to apply the one-to-many network. Therefore, we proposed PHT (Preposition Hash Table) scheme to prevent exposure of hash values during wireless communication. By reducing the risk of cryptographic key exposure, the use time of the cryptographic key can be extended and the security of the drone network will be improved. In addition, the cryptographic key exchange is not performed during flight, it is advantageous to apply PHT for a swarm drone network. Through simulation, we confirmed that the proposed scheme can contribute to the security of the drone network.

Flight Path Measurement of Drones Using Microphone Array and Performance Improvement Method Using Unscented Kalman Filter (마이크로폰 어레이를 이용한 드론의 비행경로 측정과 무향칼만필터를 이용한 성능 개선법에 대한 연구)

  • Lee, Jiwon;Go, Yeong-Ju;Kim, Seungkeum;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.975-985
    • /
    • 2018
  • The drones have been developed for military purposes and are now used in many fields such as logistics, communications, agriculture, disaster, defense and media. As the range of use of drones increases, cases of abuse of drones are increasing. It is necessary to develop anti-drone technology to detect the position of unwanted drones using the physical phenomena that occur when the drones fly. In this paper, we estimate the DOA(direction of arrival) of the drone by using the acoustic signal generated when the drone is flying. In addition, the dynamics model of the drones was applied to the unscented kalman filter to improve the microphone array detection performance and reduce the error of the position estimation. Through simulation, the drone detection performance was predicted and verified through experiments.

Development of Chinese Cabbage Detection Algorithm Based on Drone Multi-spectral Image and Computer Vision Techniques (드론 다중분광영상과 컴퓨터 비전 기술을 이용한 배추 객체 탐지 알고리즘 개발)

  • Ryu, Jae-Hyun;Han, Jung-Gon;Ahn, Ho-yong;Na, Sang-Il;Lee, Byungmo;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.535-543
    • /
    • 2022
  • A drone is used to diagnose crop growth and to provide information through images in the agriculture field. In the case of using high spatial resolution drone images, growth information for each object can be produced. However, accurate object detection is required and adjacent objects should be efficiently classified. The purpose of this study is to develop a Chinese cabbage object detection algorithm using multispectral reflectance images observed from drone and computer vision techniques. Drone images were captured between 7 and 15 days after planting a Chinese cabbage from 2018 to 2020 years. The thresholds of object detection algorithm were set based on 2019 year, and the algorithm was evaluated based on images in 2018 and 2019 years. The vegetation area was classified using the characteristics of spectral reflectance. Then, morphology techniques such as dilatation, erosion, and image segmentation by considering the size of the object were applied to improve the object detection accuracy in the vegetation area. The precision of the developed object detection algorithm was over 95.19%, and the recall and accuracy were over 95.4% and 93.68%, respectively. The F1-Score of the algorithm was over 0.967 for 2 years. The location information about the center of the Chinese cabbage object extracted using the developed algorithm will be used as data to provide decision-making information during the growing season of crops.

Advancements in Drone Detection Radar for Cyber Electronic Warfare (사이버전자전에서의 드론 탐지 레이다 운용 발전 방안 연구)

  • Junseob Kim;Sunghwan Cho;Pokki Park;Sangjun Park;Wonwoo Lee
    • Convergence Security Journal
    • /
    • v.23 no.3
    • /
    • pp.73-81
    • /
    • 2023
  • The progress in science and technology has widened the scope of the battlefield, leading to the emergence of cyber electronic warfare that exploits electromagnetic waves and networks. Drones have become more important due to advancements in battery technology and navigation systems. Nevertheless, tackling drone threats comes with its own set of difficulties. Radar plays a vital role in detecting drones, offering long-range capabilities and independence from weather conditions. However, the battlefield presents unique challenges like dealing with high levels of signal noise and ensuring the safety of the detection assets. This paper proposes various approaches to improve the operation of drone detection radar in cyber electronic warfare, with a focus on enhancing signal processing techniques, utilizing low probability of interception (LPI) radar, and implementing optimized deployment strategies.

An Analysis on Anti-Drone Technology Trends of Domestic Companies Using News Crawling on the Web (뉴스 기사의 크롤링을 통한 국내 기업의 안티 드론에 사용되는 기술 현황 분석)

  • Kim, Kyuseok
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.458-464
    • /
    • 2020
  • Drones are being spreaded for the purposes such as construction, logistics, scientific research, recording, toy and so on. However, anti-drone related technologies which make the opposite drones neutralized are also widely being researched and developed because some drones are being used for crime or terror. The range of anti-drone related technologies can be divided into detection, identification and neutralization. The drone neutralization methods are divided into Soft-kill one which blocks the detected drones using jamming and Hard-kill one which destroys the detected ones physically. In this paper, Google and Naver domestic news articles related to anti-drone were gathered. Analyzing the domestic news articles, 8 of related technologies using RF, GNSS, Radar and so on were found. Regarding as this, the general features and usage status of those technologies were described and those on anti-drone for each company and agency were gathered and analyzed.