• Title/Summary/Keyword: Drone Identification

Search Result 41, Processing Time 0.021 seconds

Estimation of Paddy CH4 Emissions through Drone-Image-Based Identification of Paddy Rice Straw Application & Winter Crop Cultivation (Drone 영상을 이용한 논 필지 볏짚 환원-동계 재배 확인 및 CH4 배출량 산정)

  • Jang, Seongju;Park, Jinseok;Hong, Rokgi;Hong, Joopyo;Kwon, Chaelyn;Song, Inhong
    • Journal of Korean Society of Rural Planning
    • /
    • v.27 no.3
    • /
    • pp.21-33
    • /
    • 2021
  • Rice straw management and winter crop cultivation are crucial components for the accurate estimation of paddy methane emissions. Field-based extensive investigation of paddy organic matter management requires enormous efforts however it becomes more feasible as drone technology advances. The objectives of this study were to identify paddy fields of straw application and winter crop cultivation using drone images and to apply for the estimation of yearly methane emission. Total 35 sites of over 150ha in area were selected nationwide as the study areas. Drone images of the study sites were taken twice during summer and winter in 2018 through 2019: Summer images were used to identify paddy cultivation areas, while winter images for straw and winter crop practices. Drone-image-based identification results were used to estimate paddy methane emission and compared with conventional method. As the result, mean areas for paddy, straw application and winter crop cultivation were 118.9ha, 12.0ha, and 11.3ha, respectively. Overall rice straw application rate were greater in Gyeonggi-do(20%) and Chungcheongnam-do(12%), while winter crop cultivation was greatest in Gyeongsangnam-do(30%) and Jeolla-do(27%). Yearly mean methane emission was estimated to be 226.2kg CH4/ha/yr in this study and about 32% less when compared to 331.8kg CH4/ha/yr estimated with the conventional method. This was primarily because of the lower rice straw application rate observed in this study, which was less than quarter the rate of 55.62% used for the conventional method. This indicates the necessity to use more accurate statistics of rice straw application as well as winter crop practices into paddy methane emission estimation. Thus it is recommended to further study to link drone technology with satellite image analysis in order to identify organic management practices at a paddy field level over extensive agricultural area.

Identification of key elements for stable flight of drones and horizontal space compartment in urban area (드론의 안정적 비행을 위한 핵심요소와 도시 수평 공간 구획)

  • Kim, Jung-Hoon;Kim, Hong-Bae
    • Journal of Korea Planning Association
    • /
    • v.53 no.7
    • /
    • pp.39-48
    • /
    • 2018
  • The purpose of this study is to verify the stable flight conditions of drones within a limited urban area by using the ICAO(International Civil Aviation Organization) reich model which is using to evaluate civil aircraft stability. The results of the study are summarized as follows. First, in order for the drones flying stably, the horizontal safety separation distance between a drone and another should be at least 1,852M. Second, assuming that no obstacles within 1,852M of horizontal space, two drones can be fly into upper and lower spaces. However there are obstacles such as buildings, it is impossible to secure a 1,852M distance between drones. Third, sensitivity analysis point out that the separation interval($s_x$) of drone aviation has the greatest influence on the TLS(Target Level of Safety). If future research is conducted to lower the numerical values, the safety distance between a drone and another drone will be drastically reduced, allowing more detailed urban space division, and will be presented as a scientific numerical value for establishing a dedicated path for the drones.

Damaged cable detection with statistical analysis, clustering, and deep learning models

  • Son, Hyesook;Yoon, Chanyoung;Kim, Yejin;Jang, Yun;Tran, Linh Viet;Kim, Seung-Eock;Kim, Dong Joo;Park, Jongwoong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.17-28
    • /
    • 2022
  • The cable component of cable-stayed bridges is gradually impacted by weather conditions, vehicle loads, and material corrosion. The stayed cable is a critical load-carrying part that closely affects the operational stability of a cable-stayed bridge. Damaged cables might lead to the bridge collapse due to their tension capacity reduction. Thus, it is necessary to develop structural health monitoring (SHM) techniques that accurately identify damaged cables. In this work, a combinational identification method of three efficient techniques, including statistical analysis, clustering, and neural network models, is proposed to detect the damaged cable in a cable-stayed bridge. The measured dataset from the bridge was initially preprocessed to remove the outlier channels. Then, the theory and application of each technique for damage detection were introduced. In general, the statistical approach extracts the parameters representing the damage within time series, and the clustering approach identifies the outliers from the data signals as damaged members, while the deep learning approach uses the nonlinear data dependencies in SHM for the training model. The performance of these approaches in classifying the damaged cable was assessed, and the combinational identification method was obtained using the voting ensemble. Finally, the combination method was compared with an existing outlier detection algorithm, support vector machines (SVM). The results demonstrate that the proposed method is robust and provides higher accuracy for the damaged cable detection in the cable-stayed bridge.

A Study on the Optimization Conditions for the Mounted Cameras on the Unmanned Aerial Vehicles(UAV) for Photogrammetry and Observations (무인비행장치용 측량 및 관측용 탑재 카메라의 최적화 조건 연구)

  • Hee-Woo Lee;Ho-Woong Shon;Tae-Hoon Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1063-1071
    • /
    • 2023
  • Unmanned aerial vehicles (UAVs, drones) are becoming increasingly useful in a variety of fields. Advances in UAV and camera technology have made it possible to equip them with ultra-high resolution sensors and capture images at low altitudes, which has improved the reliability and classification accuracy of object identification on the ground. The distinctive contribution of this study is the derivation of sensor-specific performance metrics (GRD/GSD), which shows that as the GSD increases with altitude, the GRD value also increases. In this study, we identified the characteristics of various onboard sensors and analysed the image quality (discrimination resolution) of aerial photography results using UAVs, and calculated the shooting conditions to obtain the discrimination resolution required for reading ground objects.

Replay Attack based Neutralization Method for DJI UAV Detection/Identification Systems (DJI UAV 탐지·식별 시스템 대상 재전송 공격 기반 무력화 방식)

  • Seungoh Seo;Yonggu Lee;Sehoon Lee;Seongyeol Oh;Junyoung Son
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.133-143
    • /
    • 2023
  • As drones (also known as UAV) become popular with advanced information and communication technology (ICT), they have been utilized for various fields (agriculture, architecture, and so on). However, malicious attackers with advanced drones may pose a threat to critical national infrastructures. Thus, anti-drone systems have been developed to respond to drone threats. In particular, remote identification data (R-ID)-based UAV detection and identification systems that detect and identify illegal drones with R-ID broadcasted by drones have been developed, and are widely employed worldwide. However, this R-ID-based UAV detection/identification system is vulnerable to security due to wireless broadcast characteristics. In this paper, we analyze the security vulnerabilities of DJI Aeroscope, a representative example of the R-ID-based UAV detection and identification system, and propose a replay-attack-based neutralization method using the analyzed vulnerabilities. To validate the proposed method, it is implemented as a software program, and verified against four types of attacks in real test environments. The results demonstrate that the proposed neutralization method is an effective neutralization method for R-ID-based UAV detection and identification systems.

An Empirical Study on the Application of Drone based on LED-ID & RFID for Effective Stock Management of Unit Load Device - perspective of Air Cargo Terminal Case (항공화물 탑재용기(ULD)의 효율적 관리를 위한 LED-ID와 RFID 기반의 드론 적용 방안에 관한 연구- 항공화물터미널사례)

  • Baik, Namjin;Baik, Namkyu;Lee, Minwoo;Cha, Jae-Sang
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.157-161
    • /
    • 2017
  • Effective management of ULD (Unit Load Device) in Air Cargo Transportation is one of the Airline's main concerns. At present, the way of management of ULD which has the ID tag based on RFID is carried by cargo control staff with PDA. However, the activity of ULD management is limitted due to complexity of cargo terminal facilities. In this study, we offer the effective way of management of ULD by the DRONE equipped by LED-ID & RFID READER at the higher altitude in Air Cargo Terminal to recover the difficulty of identification due to complexity of terminal facilities. Further to the above, we suggest the operational effectiveness, limitation, and the direction of future research.

Calculation of Tree Height and Canopy Crown from Drone Images Using Segmentation

  • Lim, Ye Seul;La, Phu Hien;Park, Jong Soo;Lee, Mi Hee;Pyeon, Mu Wook;Kim, Jee-In
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.605-614
    • /
    • 2015
  • Drone imaging, which is more cost-effective and controllable compared to airborne LiDAR, requires a low-cost camera and is used for capturing color images. From the overlapped color images, we produced two high-resolution digital surface models over different test areas. After segmentation, we performed tree identification according to the method proposed by , and computed the tree height and the canopy crown size. Compared with the field measurements, the computed results for the tree height in test area 1 (coniferous trees) were found to be accurate, while the results in test area 2 (deciduous coniferous trees) were found to be underestimated. The RMSE of the tree height was 0.84 m, and the width of the canopy crown was 1.51 m in test area 1. Further, the RMSE of the tree height was 2.45 m, and the width of the canopy crown was 1.53 m in test area 2. The experiment results validated the use of drone images for the extraction of a tree structure.

Study on Analysis of Vibration Characteristics and Modal Test for a Quad-Rotor Drone (쿼드로터형 드론의 진동특성 분석 및 실험에 관한 연구)

  • Kim, Minsong;Kim, Jaenam;Byun, Youngseop;Kim, Jeong;Kang, Beomsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.707-714
    • /
    • 2016
  • This paper describes analysis results of vibration characteristics and modal test for a small-scale quad-rotor drone. The rotor arm has a slender body with a propeller and motor at its tip. Rotor system generates excitation for an unbalanced mass. Therefore, the drone platform is involved in the possibility of resonance. For advance identification of the possibility of resonance, confirmation of eigen-mode being closest to the propeller operation range is necessary. Material properties of CFRP tubes used for the rotor arm were acquired by finding the natural frequency based on Rayleigh method. A simplified quad-rotor FE model consisting of rotor arm assembly with tip mass was built to perform numerical analysis, and a free-free boundary condition was applied to provide flight status. Modal tests for the actual platform with impact hammer instrument were performed to verify analysis results. Separation margin from hazardous eigen-mode was checked on the propeller operation range.

Integrated Video Analytics for Drone Captured Video (드론 영상 종합정보처리 및 분석용 시스템 개발)

  • Lim, SongWon;Cho, SungMan;Park, GooMan
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.243-250
    • /
    • 2019
  • In this paper, we propose a system for processing and analyzing drone image information which can be applied variously in disasters-security situation. The proposed system stores the images acquired from the drones in the server, and performs image processing and analysis according to various scenarios. According to each mission, deep-learning method is used to construct an image analysis system in the images acquired by the drone. Experiments confirm that it can be applied to traffic volume measurement, suspect and vehicle tracking, survivor identification and maritime missions.

Drone Sound Identification and Classification by Harmonic Line Association Based Feature Vector Extraction (Harmonic Line Association 기반 특징벡터 추출에 의한 드론 음향 식별 및 분류)

  • Jeong, HyoungChan;Lim, Wonho;He, YuJing;Chang, KyungHi
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.604-611
    • /
    • 2016
  • Drone, which refers to unmanned aerial vehicles (UAV), industries are improving rapidly and exceeding existing level of remote controlled aircraft models. Also, they are applying automation and cloud network technology. Recently, the ability of drones can bring serious threats to public safety such as explosives and unmanned aircraft carrying hazardous materials. On the purpose of reducing these kinds of threats, it is necessary to detect these illegal drones, using acoustic feature extraction and classifying technology. In this paper, we introduce sound feature vector extraction method by harmonic feature extraction method (HLA). Feature vector extraction method based on HLA make it possible to distinguish drone sound, extracting features of sound data. In order to assess the performance of distinguishing sounds which exists in outdoor environment, we analyzed various sounds of things and real drones, and classified sounds of drone and others as simulation of each sound source.