• Title/Summary/Keyword: Drone Communication

Search Result 208, Processing Time 0.028 seconds

Suggestion of Device for Collecting Fine Dust using Drone (드론을 이용한 미세먼지 데이터 수집 장치 제안)

  • Jo, Youngjun;Baek, SeungHyun;Lee, JongGu;Yu, Sangmin;Jang, Minseok;Lee, Yonsik
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.397-400
    • /
    • 2019
  • 급격히 증가하는 자동차 수, 발전량 증가 등으로 인하여 미세먼지로 인한 환경오염이 심각한 사회문제로 대두되고 있는 실정이다. 50개가 넘는 국가들이 권고치 이상의 미세먼지로 인해 피해를 받고 있으며 각 피해국들은 미세먼지 저감 대책 및 발생을 최소화하기 위한 방안을 연구하고 있다. 하지만 현재 고정형 미세먼지 취득 드론으로는 다양한 포인트의 미세먼지 데이터를 수집하기 힘든 상황이며, 기존 드론을 활용한 방법에서 도 회전 날개의 영향으로 인해 정확한 데이터를 수집하기 힘든 실정이다. 본 논문에서는 드론과 특정 구조물을 활용한 미세먼지 수집 방법을 제안하고 이의 효율성을 보여주고자 한다.

  • PDF

A Study on the Design and Implementation of Fine Dust Measurement LED Using Drone

  • Park, Jong-Youel;Ko, Chang-Bae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.48-54
    • /
    • 2020
  • Researchers recognized air pollution changes causing diseases and difficulties in living due to environmental pollution following various human activities, and have studied how to avoid fine dust harmful to the human respiratory system to be healthy. To this end, Arduino is used to equip fine dust level sensors in drones to measure the fine dust levels, visualize the measurements with LED indicator colors depending on the measurements to inform users of the danger of fine dust, and use the benefits of drones to specify dangerous fine dust zones and measure the fine dust levels. Users can see the changes depending on the fine dust levels in real time with the LED indicators. This will contributes to measuring fine dust levels easily in dangerous areas. Mission Planner (ArduPilot) is used to set up the GPS of drone, and store the data from the dust sensor as contents. This study aims to establish a method for improving the environment to measure fine dust levels with drones with LED indicators for fine dust, and reduce fine dust.

Spectrum Policy and Technologies for Promoting UAS Industry (UAS 산업 활성화를 위한 스펙트럼 정책 및 기술)

  • Kang, Young-Heung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.7
    • /
    • pp.509-518
    • /
    • 2017
  • Since the UAS(Unmanned Aircraft System) or Drone is expected to grow rapidly with the advent of the $4^{th}$ Industrial Revolution era, the EU, China, and Japan as well as United States have deveoped a national roadmap and actively fostered UAS related industries. Also, in Korea, the frequencies of 2,670 MHz bandwidth has been also supplied newly or additionaly in 2016 for Drones in order to activate promising a new UAS industry based on wireless communication, which has great potential for future industrial growth. Therefore, in this paper, some solutions to promote UAS industry has been proposed by analyzing the domestic trends, the major technologies, the frequency issues, and the law framework for UAS.

Design and Development of Underwater Drone for Fish Farm Growth Environment Management (양식장 생육 환경관리를 위한 수중 드론 설계 및 개발)

  • Yoo, Seung-Hyeok;Ju, Yeong-Tae;Kim, Jong-Sil;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.959-966
    • /
    • 2020
  • With the growing importance of the fishery industry and the rapid growth of the aquaculture industry, research on smart farms through ICT convergence in the aquaculture field is in progress. To enable monitoring of the growing environment at the farm site, an underwater drone drive unit, an image collection device, an integrated controller for posture stabilization, and a remote control device capable of controlling and controlling drones through real-time underwater images were proposed, and design, development, and tests were conducted. By utilizing underwater drones, it is possible to replace the supply and demand of manpower and high-cost work in the aquaculture industry, and to manage fish farms in a stable manner by reducing the probability of farming deaths.

Design Plan of Signal Processing Structure for Real-Time Application in Drone Detection Radar (실시간 적용을 위한 드론 탐지 레이다용 신호처리 구조 설계 방안)

  • Kong, Young-Joo;Sohn, Sung-Hwan;Hyun, Jun-Seok;Yoo, Dong-Gil;Cho, In-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.31-36
    • /
    • 2022
  • Recently, drones are being used in various fields, and drone technology is also developing. The risks of drones are increasing, then technology to detect drones is important. However, it is extremely difficult to detect and recognize drones due to the low level radar cross section of the commercial drones. In this paper, a signal processor structure that was mounted the miniaturized and light-weighted was designed. in order to process large amounts of data in real time, parallel processing was performed for each channel and an algorithm was applied to shorten the operation time in each step. As a test of verifing the detection performance through test, it was confirmed that the structure design works in real time.

Study on-Gas-generating Property Of Lithium Polymer Drone batteries (리튬 폴리머 드론 배터리 방전시 이상가스에 대한 연구)

  • Jong-Heon Lee;Jae-Won Kim;Hong-Joo Yoon;Won-Chan Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.195-204
    • /
    • 2023
  • The drone's battery system uses lithium-ion or lithium-polymer batteries, and it is known that the cause of fire during the disposal process after using the drone is combustible gas from the battery being discarded. Most of the batteries in the disposal process generated oxygen, but a small amount of flammable gas was also generated, and a large amount of chlorine ions and sulfates were also detected in the equipment used for treatment. If a system that detects this early is configured, it will be possible to reduce the risk of accidents caused by discarded batteries.

MPC based path-following control of a quadcopter drone considering flight path and external disturbances in MATLAB/Simulink (MATLAB/Simulink 기반 주행 경로와 외란을 고려한 쿼드콥터 드론의 모델 예측 제어 기반 경로 주행 제어)

  • Soon-Jae Gwon;Gu-Min Jeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.472-477
    • /
    • 2023
  • In this paper, we proposes the use of Model Predictive Control (MPC) techniques to enable quadcopter drones to effectively follow paths and maintain flight safety even under dynamic external environments and disturbances. Through simulations conducted in MATLAB/Simulink, the performance of two controllers, PID and MPC, is compared in flight scenarios with disturbances. The proposed design method shows that the MPC controller, when compared to the PID controller, exhibits a difference in the Mean Squared Error between the intended flight path and the actual path of the quadcopter drone. This difference is 0.2 in performance under no disturbance, and it increases to 0.8 under disturbance, demonstrating the improved path following accuracy of the MPC controller.

A Study on the Direction finding of Drones Using Apollonius Circle Technique (Apollonius Circle 기법을 활용한 드론 방향탐지 연구)

  • Choi, Hong-Rak;Jeong, Won-Ho;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.83-92
    • /
    • 2018
  • This paper uses the Apollonius Circle technique to estimate the position of a target that generates a specific signal by using a drone, which is rapidly becoming a rapidly expanding industry. The existing direction finding method is performed through the vehicle on the ground or installed the antenna at a high position to detect the position of the target. However, the conventional direction finding method is difficult to configure the reception environment of the LOS signal, It is difficult. However, the direction finding using the drone is easy to construct and measure the LOS signal receiving environment using the drone flying at high altitude. In this study, we use the 3D 800MHz Path-Loss Model to reconstruct the signal by using the measurement data of the ground direction finding, reconstruct the signal by using the 3-D 800MHz Path-Loss Model, and use the Apollonius Circle method to estimate the position of the target. A simulation was performed to estimate the position of the target. Simulation was performed to determine the target position estimation performance by configuring the ground direction finding and the dron direction finding.

Implementation of Multi-Streaming System of Live Video of Drone (드론 라이브 영상의 다중 스트리밍 시스템 구현)

  • Hwang, Kitae;Kim, Jina;Choi, Yongseok;Kim, Joonhee;Kim, Hyungmin;Jung, Inhwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.143-149
    • /
    • 2018
  • This paper presents an implementation of a streaming system which can forward live video stream to multiple users from a Phantom4, which is a drone made by DJI. We constructed the streaming server on Raspberry Pi 3 board for high mobility. Also We implemented the system so that the video stream can be played on any devices if the HTML5 standard web browser is utilized. We compiled C codes of FFmpeg open sources and installed in the Raspberry Pi3 as the streaming server and developed a Java application to execute as the integrated server that controls the other softwares on the streaming server. Also we developed an Android application which receives the live video stream from the drone and sends the streaming server continuously. The implemented system in this paper can successfully stream the live video on 24 frames per second at the resolution of 148x112 in considering the low hardware throughput of the streaming server.

A Rendezvous Point Replacement Scheme for Efficient Drone-based Data Collection in Construction Sites (공사현장에서 효율적인 드론 기반 데이터 수집을 위한 랑데부 포인트 교체 기법)

  • Kim, Taesik;Jung, Jinman;Min, Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.153-158
    • /
    • 2017
  • Rendezvous point is used to gather the data from sensor nodes and send to sink node efficiently in selected area. It incurs a unbalanced energy consumption nearby the rendezvous point which can shorten the network life time shortly. Thus, it is very important to select the rendezvous point effectively among all sensors in order to not drain the battery of a sensor node in construction sites. In this paper, we propose a rendezvous point replacement mechanism which considers remaining energy of nodes to prolong the network lifetime. Also, for shortening the distance of drone at the same time, it increases the probability of the near-by drone node becoming rendezvous point. The simulation results show that the proposed scheme can significantly improve the network lifetime and the flight distance compared with the existing LEACH, L-LEACH algorithm.