드론은 국토조사, 수송, 해양, 환경, 방재, 문화재, 건설 등 다양한 분야에서 활용되고 있다. 또한 사물인터넷(Internet of Things), 인공지능(Artificial Intelligence) 등과 관련하여 4차 산업 혁명의 핵심기술을 검증하고 적용시킬 수 있는 기술로 떠오르고 있다. 본 연구에서는 드론을 활용하여 균열을 자동으로 탐지할 수 있는 딥러닝 모델을 개발하고자 한다. 딥러닝 학습을 위한 이미지 데이터는 Mavic3 드론을 이용하여 수집하였고 촬영고도는 20m, ×7배율로 촬영하였다. 촬영 시 약 2m/s의 속도로 전진하여 영상을 찍고, 프레임을 추출하는 식으로 데이터를 수집하였다. 이런식으로 수집한 데이터를 통해 딥러닝 학습을 진행하였다. 본 연구에서는 딥러닝 학습모델로 Backbone으로는 Swin Transformer, Architecture로 UperNet을 사용하였다. 약 800장의 라벨링 된 데이터를 Augmentation기법으로 데이터 양을 증가시키고 3차에 걸쳐 학습을 진행하였다. 1차와 2차 학습 시 Cross-Entropy loss function을 사용하였고 3차 학습 시 Tversky Loss Function을 사용하였다. 학습결과, 균열 탐지와 균열율을 계산할 수 있는 모델을 개발하였다. 또한, 드론의 위치 정보를 이용해 특정 도로의 한 차선 균열율을 계산할 수 있는 모델을 개발하였다. 향후 추가적인 연구를 통하여 균열탐지모델의 고도화를 사물인터넷(IoT)과의 융합으로 이루었을 때 소파보수(Patching)나 포트홀(Pothole)의 탐지가 가능할 것으로 보인다. 또한 드론의 실시간 탐지 업무수행으로 포장 유지 보수구간에 대한 탐지를 신속하게 확보할 수 있을것으로 기대된다.
Obstacle limitation surfaces are imaginary space surfaces that must be clear of obstacles for the aircraft to safely take off and land on the aerodrome. These surfaces are closely related to the safety of the VFR aircraft, which require a pilot to be able to see outside the cockpit, to control the aircraft's altitude, navigate, and avoid obstacles and other aircraft. The Republic of Korea, which has a lot of restrictions on the use of airspace, cannot provide a rich operating environment for VFR aircraft. Under these circumstances, safer operation will not be guaranteed if additional factors that directly or indirectly affect existing VFR routes, such as drone delivery services. This study analyzes and models the track distribution of each VFR section based on radar track data around a specific airport. Through this study, we estimate the three-dimensional space for VFR aircraft and provide the data for future research such as airspace analysis of VFR corridors and correlation with obstacle limitation surfaces.
본 연구의 목적은 도시폭염 저감을 위한 기법인 쿨루프를 연구지역에 적용하여 토지피복 객체 간 지표 온도와 흡수일사 간 공간적 상관관계 분석으로 실질적 효과 파악을 목적으로 한다. 이를 위해 실제 쿨루프가 적용된 경상남도 김해시 장유무계동 인근을 연구지역으로 선정하였으며, 드론 DJI Matrice 300 RTK에 열적외 영역센서 FLIR Vue Pro R, 가시광선 영역센서 H20T와 다중분광영역 센서인 Micasense Red-Edge를 활용하여 계측하였다. 계측 일정은 2021년 7월 27일 아침 7시 15분부터 약 1시간 30분 간격으로 총 9장의 열지도와 동일 시간대의 흡수일사 분포도, 쿨루프(113개) 및 일반옥상(367개) 지붕 객체를 추출하였다. 흡수일사 분포도는 ArcGIS의 3D 분석 기능인 Solar Radiation Analysis Tool을 통해 산출한 전천일사 분포도에 Micasense Red Edge를 통해 촬영한 Blue, Green Red, Near Infrared, Red Edge Range 영역대 센서의 조합을 통해 구축한 연구 지역의 알베도 값을 반영하여 구축한다. 전술된 자료를 기반으로 일반옥상과 쿨루프 지붕 객체별 지표온도와 흡수일사 간 Pearson 상관계수를 산출하였다. 분석 결과 일 평균 기준 일반옥상 0.550, 쿨루프 0.387의 상관계수 값을 나타내고 있었다. 하지만, 시간대별 상관성의 변화를 파악한 결과 분석일 기준 태양고도가 높은 시기인 11시 30분과 13시의 경우 일반옥상과 쿨루프 간 상관계수의 차이는 0.022, 0.024 값을 보여 유사한 상관성을 보이고 있다. 그 외 시간대는 일반옥상의 상관계수 값이 쿨루프 보다 약 0.1 이상 높은 값을 보이고 있다. 본 연구는 드론을 통해 취득한 고해상도 영상을 활용하여 쿨루프의 실질적 일사차단 영향의 가능성을 대조군이 되는 일반 옥상과의 상관성 비교를 통해 파악한 사례 연구이다. 향후 본 연구 결과를 기반으로 효율적인 도시열섬 저감기법 적용이 가능할 것으로 사료된다.
드론의 시장규모가 커짐에 따라 초창기 군사 목적에서 현재 민간부문으로 확대되고 있다. 현재 드론은 실외에서 사용될 목적으로 제작된 것이 많으나 실내에서도 드론의 활용 여부가 증가할 것으로 예상된다. 본 연구에서는 실외에서만 사용 가능한 GPS를 대신하여 영상 촬영으로 획득한 이미지를 CNN으로 학습을 시켜 자율고도제어비행을 하도록 한다. 첫 번째로 수동 조작하는 드론에 IMU센서를 부착하여 획득한 고도 데이터를 표로 제시함으로써 GPS를 사용하지 않는 드론의 실내주행에서 일정한 고도 유지는 다소 무리가 있음을 보여준다. 두 번째로 드론의 수동 조작은 일정하지 않은 고도 때문에 CNN의 학습할 영상 획득이 어렵다. 일정한 고도의 영상 획득을 위한 실험용 높이 조절 Base를 제작하여 고도별 영상을 획득한다. 획득한 영상을 통해 얻은 이미지를 CNN 학습을 시킨 후, 학습에 사용되지 않은 이미지를 사용하여 고도 판별을 확인한다. 대조군으로 실내장소를 바꾸어 미리 학습된 CNN으로 고도 판별을 확인한다. 학습에 사용된 이미지의 환경(생명공학관)과 대조군(제 2 공학관)이 촬영된 장소의 환경요소의 차이로 오차가 발생한다. 오차는 실내 장소의 총 높이의 차이 및 서로 상이한 천장 구조물에 따른 것으로 사료되며 Data crop을 통해 획득한 이미지의 천정 부분을 제거하여 노이즈를 줄여 고도 판별의 정확도를 높일 수 있을 것으로 예상한다. 세 번째, CNN으로 학습을 통해 Model을 도출하여 자율 고도 제어 프로세스를 제시한다. 그리고 해당 프로세스를 이용한 자율고도제어 주행과 수동조작을 통한 주행에서의 Z축 가속도 데이터의 표준편차를 비교하여 본 연구의 실효성을 보여준다
최근 들어 UAV(무인항공기) 및 드론을 이용하여 다양한 활용기술에 대한 연구들이 이루어지고 있다. 특히, 측량분야에서는 UAV에 탑재된 디지털 카메라나 다양한 센서들을 이용하여 취득된 고해상도의 영상자료를 바탕으로 해당 지형을 모니터링하거나, 고해상도의 정사영상 및 DSM, DEM을 생성하기 위한 기술에 관한 연구들이 수행되고 있다. 본 연구에서는 UAV와 VRS-GPS를 이용하여 GCP 정합수에 따른 정확도를 분석하여 보았다. 먼저 VRS-GPS를 이용해 지상기준점을 선점한 후 UAV를 이용하여 기본고도 150m로 촬영을 실시하였으며, 646장의 영상정보를 취득하여 DSM과 정사영상을 제작하기 위해 pix4d mapper버전을 사용하여 RMSE를 분석한 결과 GCP 정합수를 5장 이상만 하여도 국가 기본도(축척 : 1/5,000) 제작 작업규정의 오차범위를 준수하고 있어 수치지도 수정 갱신 업무까지도 충분이 활용이 가능한 것으로 판단되었다.
Weather is one of the main causes of aircraft accidents, and among the phenomena caused by weather, icing is a phenomenon in which an ice layer is formed when an object exposed to an atmosphere below a freezing temperature collides with supercooled water droplets. If this phenomenon occurs in the rotor blades, it causes defects such as severe vibration in the airframe and eventually leads to loss of control and an accident. Therefore, it is necessary to foresee the icing situation so that it can ascend and descend at an altitude without a freezing point. In this study, vibration data in normal and faulty conditions was acquired, data features were extracted, and vibration was predicted through deep learning-based algorithms such as CNN, LSTM, CNN-LSTM, Transformer, and TCN, and performance was compared to evaluate blade icing. A method for minimizing operating loss is suggested.
본 논문은 도심항공교통(UAM; urban air mobility) 시뮬레이션 제작을 위해 회전익 모델링과 성능 분석에 특화된 프로그램인 flightlab을 활용하여 정밀 동역학 모델을 구축하였다. flightlab은 저고도 및 도심풍에 의해 로터의 상세 공력 특성이 요구되는 UAM 상세 모델링에 적합하다. 따라서, 본 연구에서는 flightlab을 활용하여 UAM 기체 형상으로 주목받고있는 분산추진방식의 lift-cruise UAM 모델을 UAM 모델 구현 및 성능 분석을 수행하였다. lift-cruise 형상의 UAM 모델은 수직 이착륙과 고정익 비행을 각각 담당하는 모터들로 구성된 비행체이다. 현 시점에서는, UAM 모델링에 대한 flightlab 활용 사례가 부족하며, 기존의 고정익이나 드론 모델로는 충분한 평가를 수행하기에는 어렵다. 이에 따라, 본 연구에서는 동일한 lift-cruise 형상의 모델을 matlab을 이용해 구현하고 성능을 확인한 후, flightlab에서의 결과와 비교하여 모델링의 타당성을 심층적으로 검토하였다. 이 과정을 통해 flightlab을 활용한 UAM 상세 모델링의 가능성을 탐구하고, 미래 교통사업 기술적 진보에 이바지하고자 한다.
3차원 공간모형은 도시문제 해결을 위한 분석틀로서 도시계획, 환경, 토지 및 주택관리, 재난 시뮬레이션 등 다양한 분야에서 이용되고 있다. 또한, 3차원 공간모형의 구축 시에 저비용으로 단시간에 3차원 영상 촬영이 가능한 드론의 활용성은 증가하고 있다. 드론을 활용한 가상도시 구축 및 시뮬레이션 모듈 활용 측면에서 항공촬영의 정확도 및 3차원 공간모형의 정밀도는 매우 중요한 요소로 기능하기 때문에 이를 향상시키기 위한 방법들이 제안되고 있다. 본 연구는 건축물이 밀집하여 위치한 도심지를 대상으로 항공촬영 조건별로 드론을 활용한 항공촬영의 정확도 및 3차원 공간모형의 정밀도를 비교분석하였다. 분석 대상지는 서울특별시 영등포구 대림2동 내 건축물 밀집도가 높은 일부지역으로 선정하였으며 항공촬영 조건으로, 촬영각, 촬영고도, 드론영상의 중복률을 활용하였다. 항공촬영의 정확도는 대상지 내에 설치한 검사점의 실제 측량값과 항공촬영을 통해 구축한 3차원 공간모형의 예측값 간의 차이를 분석함으로써 정확도를 산정하였다. 3차원 공간모형의 정밀도는 항공촬영을 통해 생산된 Point cloud와 Point cloud에 기반하여 구축된 3차원 공간모형 간의 차이를 분석함으로써 정밀도를 산정하였다. 분석결과, 정확도의 경우, 상대적으로 높은 중복률에서 정확도가 높은 것으로 분석되었으나, 정밀도의 경우에는 중복률이 높을수록 정밀도는 오히려 낮아지는 경향을 보였으며 촬영각도가 수직에 가까울수록 정밀도는 높아지는 경향을 보였다. 촬영고도의 경우에는 정밀도와 유의미한 관련성은 없는 것으로 분석되었고, 기선고도비의 경우에는 중복률과 상이하게, 기선고도비가 커질수록 정밀도는 높아지는 경향을 보였다.
위성산출물의 검증은 위성자료를 이용하게 되는 후속 분석작업에 결정적인 영향을 미친다. 특히, 탁하고 얕은 수심의 육상 인근 해역에서의 해색산출물은 해수구성입자 분포의 복잡성으로 인하여 오랫동안 그 성능 개선이 이루어지지 않고 있어왔다. 또한, 선박이나 고정관측소를 이용한 검증은 위성산출물과 현저히 차이나는 공간범위로 인하여 명확한 한계점을 노출해왔었다. 본 연구는 우선 선박을 이용한 현장조사를 통해서 천리안해양위성2호(GOCI-II)의 주요 산출물인 원격탐사반사도, 엽록소농도, 총부유물농도, 용존유기물 등에 대한 검증을 수행하였다. 둘째로, 본 연구에서는 드론영상을 이용한 산출물 검증을 위한 초기분석결과를 제시하였다. 선박과 위성사이의 공간범위 차이를 메우기 위하여 각 선박 정점에서 드론에 탑재된 MicaSense RedEdge 카메라를 이용해 해수에 대한 다분광 영상을 획득하였다. 향후 드론을 이용한 위성산출물 검증에 활용되도록 드론 고도에 따른 해수복사휘도의 변화를 분석하였다. 제한된 숫자의 현장조사 자료 개수이지만, 검증결과, 555 nm 에서의 GOCI-II 원격탐사반사도는 약 30% 가량 과대추정 되는 것으로 나타났고, 엽록소농도 및 용존 유기물은 현장 측정값과의 상관도가 낮았다. 총부유물농도는 결정계수 약 0.6의 상관도를 나타내었고 약 20%의 불확도를 가지는 것으로 나타났다.
본 연구에서는 드론 정사영상과 객체추출 기법을 융합하여 개체목을 선별함과 더불어 수고를 추정할 수 있는 방법론을 제시하고자 하였다. 연구대상지는 충청남도 예산군 공주대학교 학술림에 위치한 리기다소나무림으로 간벌을 강도별로(40%, 20%, 10%, 대조구)로 조성한 시험지이다. 정사영상취득은 DJI사의 MAVIC2 PRO 드론을 이용하였으며, 촬영 범위 내 가장 높은 지형지물을 고려하여 고도를 180 m로 설정하였다. 영상왜곡을 방지하기 위하여 지상기준점 설치 및 내중첩(End lap)과 옆중첩(Side lap)을 각각 80%로 설정하였다. 영상분석 통하여 수치표면모델(DSM)과 수치지형 표고모델(DTM)을 추출하고 두 모델의 고도차를 이용해 수고모델(DCHM)을 생성하였다. 본 연구결과에 의하면, 간벌강도별 개체목 추출율은 간벌강도 40%는 109.1%, 간벌강도 20% 87.1%, 간벌강도 10% 63.5%, 대조구 56.0% 수준이었다. 개체목 별 수고특성을 추출한 결과, 간벌강도 40%는 현장조사 결과보다 약 1.43 m 낮았으며, 간벌강도 20%는 1.73 m, 간벌강도 10%는 1.88 m, 대조구는 2.22 m 낮게 측정되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.