• Title/Summary/Keyword: Drone

Search Result 1,255, Processing Time 0.029 seconds

Developing a Virtual Drone Flight Training Contents for Beginner (드론 기초 운항법 교육을 위한 가상드론 트레이닝 콘텐츠 제작)

  • Park, Min-Ah;Yun, Chan;Woo, Tack
    • Journal of Korea Game Society
    • /
    • v.19 no.5
    • /
    • pp.53-62
    • /
    • 2019
  • A drone market is growing fast. Nevertheless, basic drone flight training contents are not actively developing or studying. For solving this problem, first, the researcher has studied a method of training basic drone flight skills and analyzed various existing drone training contents. Then, the researcher designed a game via the researched method above that trains drone flight skills. The modern gamepad, like an Xbox controller, was key mapped to operate as a standard drone radio controller. Further research will develop drone training content for specialized purpose fields.

Experiments of RTK based Precision Landing for Rotary Wing Drone (RTK를 이용한 회전익 드론 정밀 착륙 실험)

  • Young-Kyu Kim;Jin-Woung Jang;Jong-Hee Lee;Jong-Ho Yoo;Seungh Hyun Paik;Dae-Nyeon Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.2
    • /
    • pp.75-80
    • /
    • 2023
  • Unmanned drone stations for automatic charging have been developed in order to overcome the flying time limitation of rotary wing drones. Since the drone stations is an unmanned operating system, each of the drones will be required to have a high degree of landing accuracy. Drone precision landing has been mainly studied depended on image processing technologies, but the image processing systems make several problems, such as the mission weight, the drone cost, and the development complexity increases, and the flight time decrease. Thus, this paper researched accuracy of precision landing based on RTK (real time kinetics) for rotary wing drones. For the experiments of RTK based precision landing, a drone repeatedly performed three missions. The survey accuracies of the RTK about missions respectively were set as 0.3, 0.2, and 0.1 meters. Each mission has one take-off point, two way-points and one landing-point, and was repeated ten times. The experiment results revealed landing error distance means of around 0.258, 0.12 and 0.057 meters on each of RTK setting.

Analysis of Drone Surveying Using a Low-Cost PPK Kit (PPK Kit를 활용한 드론 측량 분석)

  • Park, Junho;Kim, Taerim
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.4
    • /
    • pp.41-52
    • /
    • 2021
  • With the popularization of drones and the ease of use of the Global Navigation Satellite System (GNSS), drone photogrammetry for terrain information has been widely used. Drone photogrammetry enables the realization of high-accuracy three-dimensional topography for the entire area with less effort and time compared to the past direct survey using GNSS or total station. From 3-D topographic data, various topographical analysis is possible. To improve the accuracy of drone photogrammetry, direct GCP surveying in the field is essential, and the numbers and reasonable positioning of GCPs are very important. In the case of beaches or tidal flats on the west coast of Korea, the numbers and location of GCPs are important factors in efficient drone photogrammetry because of the size of the area, difficulties of movement, and the risk from tides. If the RTK (Real-time kinematic) or PPK (Post-processed kinematic) method is used, the increased accuracy of the drone's location enables high-accuracy photogrammetry with a small number of GCPs. This study presents an efficient drone photogrammetry method in terms of time and economy by comparing and analyzing the results of drone photogrammetry using Non-PPK with low-cost PPK-Kit, based on the tests of various numbers and locations of GCPs in the university field including various slopes and structures like coastal terrain.

Transponder and Ground Station Systems for Drones

  • Kim, Ki-Su;Ha, Heon-Seong;Lee, Jong-Chan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.9-15
    • /
    • 2020
  • In this paper, we propose a case that drone (unmanned aerial vehicle), one of the representative technologies of the 4th Industrial Revolution, threatens airport safety and privacy infringement, and describes a drone control system proposal to solve the problem. Unmanned aerial vehicle (Drone) is creating a serious problem recently, In Korea, on May 21, 19, according to the Jeju Regional Aviation Administration, drones flew over Jeju Jeongseok Airfield twice in the same month, causing problems in aircraft operation. In overseas cases, two drones near the runway of Gatwick International Airport in the UK There has been a disturbance in which the takeoff and landing of the aircraft flies for a while, and various problems have occurred, such as voyeuring the private life of an individual using a drone. This paper is equipped with an Acess Point transponder mounted on a drone (unmanned aerial vehicle), and unspecified many who want to receive flight information (coordinates, altitude, and obstacles) of the drone access the drone AP, receive and receive the flight information of the drone, and receive unspecified multiple Drone AP flight information is collected and collected to provide the information of the drone currently floating on one user interface screen. In addition, an AP transponder is proposed to operate a safe drone (unmanned aerial vehicle) and the drone's flight information is transmitted., To receive and collect and collect data.

A Study on Standardization on the Flight Controller Mode in Remotely Piloted Aircraft Drone : Focused on Drone Controller Mode Preference (원격조종항공기 드론 조종기모드 표준화 연구 : 드론 조종기모드 선호도를 중심으로)

  • Park, Wontae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.69-75
    • /
    • 2019
  • Remotely Piloted Aircraft (RPA) controls as a type of unmanned aerial vehicle (drone) is growing rapidly and its flight controller stick disposition is required standardization. We should standardize RPA drone flight control disposition because the flight pilot of RPA is hard to be trained so the flight controller stick differences impairs safety and wastes time and effort of flight controller industry. So this study researches the on-going standardization of RPA drone flight control disposition in Korea and foreign countries. Also this paper analyzes and researches of expert about RPA drone flight controller function and application of flight control mode. I accomplished expert research about standardization plan of unmanned flight control mode and confirm the necessity. Nowadays mode1 and 2 are mostly used in Korea so I carried out preference investigation for two modes. There were 4 preferences choices of RPA drone control mode necessity (importance) and recommendation of standardization modes. They answered that necessity of standardization is important considering pilot training, flight safety and positive development of drone industry. The result of standardization mode preference is that they prefer mode 2 (drone maker 86%, training facilities and research facilities 58%, government bureau 60%). Overall preference result shows that mode 1 24%, mode 1&2 16%, mode 2 60%. So they preferred mode 2 by 60%. The differences between two modes are the direction of throttle and pitch. Direction of throttle and pitch operate opposite way. They prefer mode 2 because mode 2 has similarities of manned flight control mode. Significance of this study is that it showed the necessity of standardization and flight control preference in a quantitative way. It will help drone standardization in related industries and development direction near future.

Real-time Tele-operated Drone System with LTE Communication (LTE 통신을 이용한 실시간 원격주행 드론 시스템)

  • Kang, Byoung Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.35-40
    • /
    • 2019
  • In this research, we suggest a real-time tele-driving system for unmanned drone operations using the LTE communication system. The drone operator is located 180km away and controls the altitude and position of the drone with a 50ms time delay. The motion data and video from the drone is streamed to the operator. The video is played on the operator's head-mounted display (HMD) and the motion data emulates the drone on the simulator for the operator. In general, a drone is operated using RF signal and the maximum distance for direct control is limited to 2km. For long range drone control over 2km, an auto flying mode is enabled using a mission plan along with GPS data. In an emergency situation, the autopilot is stopped and the "return home" function is executed. In this research, the immersion tele-driving system is suggested for drone operation with a 50ms time delay using LTE communication. A successful test run of the suggested tele-driving system has already been performed between an operator in Daejeon and a drone in Inje (Gangwon-Do) which is approximately 180km apart.

Classification of DJI Drones Based on Flight Log Decryption Method (비행 로그 복호화 방식에 따른 DJI 드론 분류)

  • Lee, Youngwoo;Kim, Juhwan;Yu, Jihyeon;Yun, Joobeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.1
    • /
    • pp.77-88
    • /
    • 2022
  • With the development and popularization of drone manufacturing technology, the drone market, which was mainly focused on industry, agriculture, and military, is also showing great growth in individual and commercial markets. Among them, DJI has a high share in the personal and commercial drone market, and accordingly, forensic analysis of DJI drones is drawing attention. In particular, when stealing and analyzing drones used in criminal acts, a technology to interpret flight logs recording drone flight paths and hardware information is needed, which inevitably applies drone models due to differences in decryption methods. Therefore, when an unidentified drone is acquired from the perspective of a digital forensic investigator, a clear classification of a drone model to which analysis can be applied is required. This paper proposes a method of extracting and analyzing artifacts of DJI drones through forensics, and analyzes media data analysis and flight log analysis results and decryption methods for three drone models with different release years of DJI. Finally, drones in the DJI product line are classified according to whether the commercialized DJI drone flight log is decrypted.

A Study on Filling the Spatio-temporal Observation Gaps in the Lower Atmosphere by Guaranteeing the Accuracy of Wind Observation Data from a Meteorological Drone (기상드론 바람관측자료의 정확도 확보를 통한 대기하층 시공간 관측공백 해소 연구)

  • Seung-Hyeop Lee;Mi Eun Park;Hye-Rim Jeon;Mir Park
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.441-456
    • /
    • 2023
  • The mobile observation method, in which a meteorological drone observes while ascending, can observe the vertical profile of wind at 1 m-interval. In addition, since continuous flights are possible at time intervals of less than 30 minutes, high-resolution observation data can be obtained both spatially and temporally. In this study, we verify the accuracy of mobile observation data from meteorological drone (drone) and fill the spatio-temporal observation gaps in the lower atmosphere. To verify the accuracy of mobile observation data observed by drone, it was compared with rawinsonde observation data. The correlation coefficients between two equipment for a wind speed and direction were 0.89 and 0.91, and the root mean square errors were 0.7 m s-1 and 20.93°. Therefore, it was judged that the drone was suitable for observing vertical profile of the wind using mobile observation method. In addition, we attempted to resolve the observation gaps in the lower atmosphere. First, the vertical observation gaps of the wind profiler between the ground and the 150 m altitude could be resolved by wind observation data using the drone. Secondly, the temporal observation gaps between 3-hour interval in the rawinsonde was resolved through a drone observation case conducted in Taean-gun, Chungcheongnam-do on October 13, 2022. In this case, the drone mobile observation data every 30-minute intervals could observe the low-level jet more detail than the rawinsonde observation data. These results show that the mobile observation data of the drone can be used to fill the spatio-temporal observation gaps in the lower atmosphere.

Trends in Logistics Delivery Services Using UAV (드론 물류 배송 서비스 동향)

  • Han, K.S.;Jung, H.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.1
    • /
    • pp.71-79
    • /
    • 2020
  • Since Amazon announced plans to deliver goods to customers using drones, many countries and companies have become interested in drone logistics delivery services and have begun testing drone delivery for various goods based on service scenarios. Whenever there is news of a successful drone delivery anywhere in the world, people increasingly expect the delivery of goods through drones. Although delivery services using drones are currently in a trial-and-error stage, given technical limitations and institutional and social constraints, a complete shift to drone logistics delivery is not yet possible. In anticipation of the drone logistics delivery service, recent drone delivery tests, current service trends, and requirements for drone delivery service will be examined.

Flow Interaction of Sailing Drone using Numerical Method

  • Ngoc, Pham Minh;Choi, Min-Seon;Yang, Changjo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.230-232
    • /
    • 2019
  • There is an accelerating need for ocean sensing where autonomous vehicles can play a key role in assisting engineers, researcher and scientists with environmental monitoring and collecting oceanographic data. This paper is performed to develops an autonomous sailing drone to be used as a sensor carrying platform for autonomous data acquisition at Sea. From a sailing drone design viewpoint, it is important to establish reliable prediction methods for sailing drone's resistance. The required power for the propulsion unit depends on the ship resistance and speed. There are three solutions for the prediction of ship resistance as follow analytical methods, model tests in tanks and Computational Fluid Dynamics (CFD). The present paper aims at simulating sailing drone friction resistance using numerical method. The dynamic mesh motion is used to describe the sailing drone movement.

  • PDF