• Title/Summary/Keyword: Driving-system design

Search Result 1,243, Processing Time 0.026 seconds

Development of a Real-Time Driving Simulator for Vehicle System Development and Human Factor Study (차량 시스템 개발 및 운전자 인자 연구를 위한 실시간 차량 시뮬레이터의 개발)

  • 이승준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.250-257
    • /
    • 1999
  • Driving simulators are used effectively for human factor study, vehicle system development and other purposes by enabling to reproduce actural driving conditions in a safe and tightly controlled enviornment. Interactive simulation requries appropriate sensory and stimulus cuing to the driver . Sensory and stimulus feedback can include visual , auditory, motion, and proprioceptive cues. A fixed-base driving simulator has been developed in this study for vehicle system developmnet and human factor study . The simulator consists of improved and synergistic subsystems (a real-time vehicle simulation system, a visual/audio system and a control force loading system) based on the motion -base simulator, KMU DS-Ⅰ developed for design and evaluation of a full-scale driving simulator and for driver-vehicle interaction.

  • PDF

A Methodology on System Implementation for Road Monitoring and Management Based on Automated Driving Hazard Levels (위험도 기반 도로 모니터링 및 관리 시스템 구축 방안)

  • Kyuok Kim;Sang Soo Lee;SunA Cho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.299-310
    • /
    • 2022
  • The ability of an automated driving system is based on vehicle sensors, judgment and control algorithms, etc. The safety of automated driving system is highly related to the operational status of the road network and compliant road infrastructure. The safe operation of automated driving necessitates continuous monitoring to determine if the road and traffic conditions are suitable and safe. This paper presents a node and link system to build a road monitoring system by considering the ODD(Operational Design Domain) characteristics. Considering scalability, the design is based on the existing ITS standard node-link system, and a method for expressing the monitoring target as a node and a link is presented. We further present a technique to classify and manage hazard risk into five levels, and a method to utilize node and link information when searching for and controlling the optimal route. Furthermore, we introduce an example of system implementation based on the proposed node and link system for Sejong City.

Localization Requirements for Safe Road Driving of Autonomous Vehicles

  • Ahn, Sang-Hoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.389-395
    • /
    • 2022
  • In order to ensure reliability the high-level automated driving such as Advanced Driver Assistance System (ADAS) and universal robot taxi provided by autonomous driving systems, the operation with high integrity must be generated within the defined Operation Design Domain (ODD). For this, the position and posture accuracy requirements of autonomous driving systems based on the safety driving requirements for autonomous vehicles and domestic road geometry standard are necessarily demanded. This paper presents localization requirements for safe road driving of autonomous ground vehicles based on the requirements of the positioning system installed on autonomous vehicle systems, the domestic road geometry standard and the dimensions of the vehicle to be designed. Based on this, 4 Protection Levels (PLs) such as longitudinal, lateral, vertical PLs, and attitude PL are calculated. The calculated results reveal that the PLs are more strict to urban roads than highways. The defined requirements can be used as a basis for guaranteeing the minimum reliability of the designed autonomous driving system on roads.

Development of the Driving Simulator of High Speed Train based on the Concurrent Engineering Design Environment (동시공학설계환경에서의 고속철도 주행시뮬레이터 개발)

  • Jun, Hyun-Kyu;Park, Sung-Hyuk;Yang, Doh-Chul;Chung, Heung-Chai;Kwak, Young-Gyu
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.423-429
    • /
    • 2004
  • The concurrent engineering technologies have been broadly used in the field of the design, testing, manufacturing and maintenance works to reduce development time and costs. For this purpose, many design environments with the product data management system, the virtual engineering system and web database system are developed. In this research, we developed the driving simulator of the KTX(Korea Train Express) as a basic study for building the concurrent engineering design environment of rolling stock. The virtual track was developed from the Seoul to the Busan and the Daejeon to Mockpo to generate immersible driving environment. Also. fault generation systems were developed to educate drivers of the KTX. We expect to reduce the time and costs of newly developed rolling stock using the design environment developed in the research.

  • PDF

Collecting the Information Needs of Skilled and Be-ginner Drivers Based on a User Mental Model for a Cus-tomized AR-HUD Interface

  • Zhang, Han;Lee, Seung Hee
    • Science of Emotion and Sensibility
    • /
    • v.24 no.4
    • /
    • pp.53-68
    • /
    • 2021
  • The continuous development of in-vehicle information systems in recent years has dramatically enriched drivers' driving experience while occupying their cognitive resources to varying degrees, causing driving distraction. Under this complex information system, managing the complexity and priority of information and further improvement in driving safety has become a key issue that needs to be urgently solved by the in-vehicle information system. The new interactive methods incorporating the augmented reality (AR) and head-up display (HUD) technologies into in-vehicle information systems are currently receiving widespread attention. This superimposes various onboard information into an actual driving scene, thereby meeting the needs of complex tasks and improving driving safety. Based on the qualitative research methods of surveys and telephone interviews, this study collects the information needs of the target user groups (i.e., beginners and skilled drivers) and constructs a three-mode information database to provide the basis for a customized AR-HUD interface design.

Design of Korean smart car driving information checking system

  • Kim, Min-Young;Jang, Jong-Wook
    • International journal of advanced smart convergence
    • /
    • v.1 no.1
    • /
    • pp.38-42
    • /
    • 2012
  • Automobilist in South Korea in order to provide car driving information to the insurance company uses 'car driving information device'. They provide car driving information of device to insurers for their premium discount. Currently these devices are used in Korea has inconvenience that this device Installation and the process for send this information to insurance companies. In this paper, Korean smart car driving information system designed using Smart phone and local-range network as a basis the 'Certification Regulations of Driving Information Check Device' of the Korea Insurance Development Institute.

Fast Response Driving of TFT LCD for Motion Picture

  • Choi, Yu-Jin;Mo, Soon-Hee;Bae, Young-Min;Lim, Young-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.449-451
    • /
    • 2002
  • We reported the algorithm of driving scheme that enhances moving picture property by improving gray-to-gray response time. Here, we report result of simulation for estimation of driving voltage to reduce response time, and experimental result. We investigated optimization of algorithm so that minimum size of LUT can support to reducing the gray-to-gray response time within 1 frame period, and with single algorithm it is possible to apply the algorithm to various kinds of LC material. So in our system there is no external EEPROM.

  • PDF

Development of Vehicle Environment for Real-time Driving Behavior Monitoring System (실시간 운전 특성 모니터링 시스템을 위한 차량 환경 개발)

  • Kim, Man-Ho;Son, Joon-Woo;Lee, Yong-Tae;Shin, Sung-Heon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • There has been recent interest in intelligent vehicle technologies, such as advanced driver assistance systems (ADASs) or in-vehicle information systems (IVISs) that offer a significant enhancement of safety and convenience to drivers and passengers. However, unsuitable design of HMI (Human Machine Interface) must increase driver distraction and workload, which in turn increase the chance of traffic accidents. Distraction in particular often occurs under a heavy driving workload due to multitasking with various electronic devices like a cell phone or a navigation system while driving. According to the 2005 road traffic accidents in Korea report published by the ROad Traffic Authority (ROTA), more than 60% of the traffic accidents are related to driver error caused by distraction. This paper suggests the structure of vehicle environment for real-time driving behavior monitoring system while driving which is can be used the driver workload management systems (DWMS). On-road experiment results showed the feasibility of the suggested vehicle environment for driving behavior monitoring system.

RESEARCH ON MODULARIZED DESIGN AND PERFORMANCE ASSESSMENT BASED ON MULTI-DRIVER OFF-ROAD VEHICLE DRIVING-LINE

  • Yi, J.J.;Yu, B.;Hu, D.Q.;Li, C.G.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.375-382
    • /
    • 2007
  • The multi-driver off-road vehicle drive-line consists of many components, with close connections among them. In order to design and analyze the drive-line efficiently, a modular methodology should be taken. The aim of a modular approach to the modeling of complex systems is to support behavior analysis and simulation in an iterative and thus complex engineering process, by using encapsulated submodels of components and of their interfaces. Multi-driver off-road vehicles are comparatively complicated. The driving-line is an important core part to the vehicle, it has a significant contribution to the performance. Multi-driver off-road vehicles have complex driving-lines, so performance is heavily dependent on the driving-line. A typical off-road vehicle's driving-line system consists of a torque converter, transmission, transfer case and driving-axles, which transfers the power generated by the engine and distributes it effectively to the driving wheels according to the road condition. According to its main function, this paper proposes a modularized approach for design and evaluation of the vehicle's driving-line. It can be used to effectively estimate the performance of the driving-line during the concept design stage. Through an appropriate analysis and assessment method, an optimal design can be reached. This method has been applied to practical vehicle design, it can improve the design efficiency and is convenient to assess and validate the performance of a vehicle, especially of multi-driver off-road vehicles.

Design of servo driving control system for heavy load (대부하용 서보 구동 제어 시스템의 설계)

  • 이만형;이장명;윤강섭;최근국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.504-509
    • /
    • 1993
  • A heavy load driving system for the gun laying control is designed with the analysis of performance in pointing accuracy and speed. To eliminate the firing noise and high frequency system noise, a .PI. filter is implemented in conjunction with the PI velocity control. To incorporate the gunner's commands in the PID position control loop easily, a .mu.-processor is utilized in the position control loop. Main difficulties in the heavy load driving system exist in the design of motor drivers and heat sinkers. With an appropriate design of the motor drivers and heat sinkers, the performance of the gun laying system is analyzed by the simulation.

  • PDF