• Title/Summary/Keyword: Driving velocity

Search Result 526, Processing Time 0.022 seconds

Stochastic Model Predictive Control for Stop Maneuver of Autonomous Vehicles under Perception Uncertainty (자율주행 자동차 정지 거동에서의 인지 불확실성을 고려한 확률적 모델 예측 제어)

  • Sangyoon, Kim;Ara, Jo;Kyongsu, Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.35-42
    • /
    • 2022
  • This paper presents a stochastic model predictive control (SMPC) for stop maneuver of autonomous vehicles considering perception uncertainty of stopped vehicle. The vehicle longitudinal motion should achieve both driving comfortability and safety. The comfortable stop maneuver can be performed by mimicking acceleration profile of human driving pattern. In order to implement human-like stop motion, we propose a reference safe inter-distance and velocity model for the longitudinal control system. The SMPC is used to track the reference model which contains the position uncertainty of preceding vehicle as a chance constraint. We conduct simulation studies of deceleration scenarios against stopped vehicle in urban environment. The test results show that proposed SMPC can execute comfortable stop maneuver and guarantee safety simultaneously.

Extended Feedback Control based on Impulse Response for Lane Change of Autonomous Driving Vehicle (자율 주행 차량의 차선 변경을 위한 충격 응답 기반 상태 확장 되먹임 제어)

  • Sangyoon Kim;Kyongsu Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.3
    • /
    • pp.17-26
    • /
    • 2023
  • This paper presents extended state feedback control based on impulse response for lane change of autonomous driving vehicle. The triple characteristic root of path tracking system and longitudinal velocity determine feedback gains. We suggest a resemblance of impulse response curve of the system and lane change trajectory of the vehicle. The root affects the duration of lane change and lateral acceleration. The effect of limited lateral acceleration and saturation of steering angle will be analyzed and discussed. Finally, simulation results will show the trajectory of lane change based on impulse response under limitation of lateral acceleration.

An accurate analytical exploration for dynamic response of thermo-electric CNTRC beams under driving harmonic and constant loads resting on Pasternak foundation

  • Mohammadreza Eghbali;Seyed Amirhosein Hosseini
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.549-564
    • /
    • 2024
  • This paper aims to analyze the dynamic response of thermoelectric carbon nanotube-reinforced composite (CNTRC) beams under moving harmonic load resting on Pasternak elastic foundation. The governing equations of thermoelectric CNTRC beam are obtained based on the Karama shear deformation beam theory. The beams are resting on the Pasternak foundation. Previous articles have not performed the moving load mode with the analytical method. The exact solution for the transverse and axial dynamic response is presented using the Laplace transform. A comparison of previous studies has been published, where a good agreement is observed. Finally, some examples were used to analyze, such as excitation frequency, voltage, temperature, spring constant factors, the volume fraction of Carbon nanotubes (CNTs), the velocity of a moving harmonic load, and their influence on axial and transverse dynamic and maximum deflections. The advantages of the proposed method compared to other numerical methods are zero reduction of the error percentage that exists in numerical methods.

Study of the Shape of Car Body Affecting Flow Resistance of Air Flowing Near Car (자동차 주위에 흐르는 공기의 유동 저항에 미치는 차체의 형상 연구)

  • Lee, Hyun-Chang;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4707-4712
    • /
    • 2014
  • Considerable fuel in cars is consumed by air resistance. The flow resistance against the air stream was analyzed by flow analysis near the passenger car body. In this study, the models were used were cars available on the real market. Two velocities entered into inlet plane of flow were 80 km/h and 110 km/h using the flow analysis of CFX. As the study method, the velocity of air flow near the car and the pressure on the rear part of car body were investigated at the driving of car. The shapes of the study models were models 1 and 2, and the flow streams were four cases of 1, 2, 3, and 4. In case 1 among the four cases, the maximum pressure ($1.017{\times}10^5Pa$) on the rear part was highest and the maximum velocity (43.81m/s) of air flow near car body was fastest. The air drag force in the case of high speed (110km/h) driving a passenger car was higher than that of a normal driving speed (80km/h). The drag force at wide section area of the car body becomes higher than the narrow section area. The shape of the car body can be effectively designed to reduce the air resistance using the study results of this analysis.

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(III)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (III)-동력경운의 경사지 견인성능-)

  • 송현갑;정창주
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.35-61
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 \ulcorner \frac {W_z \ulcorner{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} \ulcorner W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2\ulcorner "'16\ulcorner. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta \ulcorner \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.l slope land to improved its performance.

  • PDF

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(Ⅲ)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (Ⅲ)-동력경운의 경사지 견인성능-)

  • Song, Hyun Kap;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.34-34
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 ? \frac {W_z ?{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} ? W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2? "'16?. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta ? \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.

PIV measurement of step cavity with driven flow (구동류를 갖는 계단 캐비티의 PIV계측)

  • 조대환;김진구;이영호
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.113-119
    • /
    • 1998
  • An experimental study was carried out in a three-dimensional cubic cavity driven by 2-dimensional plane Poiseuille flow for three kinds of Reynolds number, $10^4$, 3 $\times$ $10^4$ and 5 $\times$ $10^4$ based on the cavity width and cavity inlet mean flow velcoity. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system. Laser based illumination and two-frame grey-level cross correlation algorithm are adopted. Severe unsteady flow fluctuation within the cavity are remarkable at above Re = 3 $\times$ $10^4$ Reynolds numbers and sheared mixing layer phenomena are also found at the region where inlet driving Poiseuille flow is collided with the clock-wise rotating main primary vortex at upper center area. Instant velocity profiles reveal that deformed forced vortex formation is observed throughout the separate two areas.

  • PDF

Numerical Analysis of Wind Driven Current and Mesoscale Air Flow in Coastal Region with Land Topography (육상지형을 고려한 연안해역에서의 중규모 기상장과 취송류에 관한 수치해석)

  • Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.23-29
    • /
    • 2006
  • A quasi depth-varying mathematical model for wind-generated circulation in coastal areas, expressed in terms of the depth-averaged horizontal velocity components and free surface elevation was validated and used to understand the diurnal circulation process. The wind velocity is considered as a dominant factor for driving the current. In this paper, three-dimensional numerical experiments that included the land topography were used to investigate the mesoscale air flaw over the coastal regions. The surface temperature of the inland area was determined through a surface heat budget consideration with the inclusion of a layer of vegetation.A series of numerical experiments were then carried out to investigate the diurnal response of the air flaw and wind-generated circulation to various types of surface inhomogeneities.

Effect of Radius of Curvature of a Corona Needle on Ionic Wind Generation (방전 침전극의 곡률반경이 이온풍 발생에 미치는 영향)

  • Hwang, Deok-Hyun;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.604-608
    • /
    • 2010
  • An electric fan for cooling high density electronic devices is limited and operated in very low efficiency. The corona discharge is utilized as the driving mechanism for an ionic gas pump, which allows for air flow control and generation with low noise and no moving parts. These ideal characteristics of ionic pump give rise to variety applications. However, all of these applications would benefit from maximizing the flow velocities and yields of the ionic pump. In this study, a needle-mesh type ionic pump has been investigated by focusing on the radius of curvature of corona needle points elevating the ionic wind velocity and efficiency. It is found that the radius of curvature of the corona discharge needle point influences significantly to produce the ionic wind and efficiency. As a result, an elevated ionic wind velocity and increased ionic wind generation yield can be obtained by optimized the radius of curvature of the corona needle electrode.

Effect of the Third Electrode of a Needle-Mesh Airgap on Ionic Wind Generation (침대 그물전극간의 제3전극이 이온풍 발생에 미치는 영향)

  • Hwang, Deok-Hyun;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2023-2026
    • /
    • 2008
  • Cooling technologies using natural and forced convection are limited and operated in very low efficiency. The corona discharge is utilized as the driving mechanism for an ionic pump, which allows for air flow control and generation with low noise and no moving parts. These ideal characteristics of ionic pump give rise to variety applications. However, all of these applications would benefit from maximizing the flow velocities and efficiencies of the pumps. In this study a needle-mesh type ionic pump, with a ring type third electrode installed just near the needle point, has been investigated by focusing on elevating the ionic wind velocity and efficiency. As a result, the enhanced ionic wind velocity and increased power yield can be obtained with the proposed ionic pump with the third electrode.