• Title/Summary/Keyword: Driving stability

Search Result 560, Processing Time 0.031 seconds

The Dielectric and Electrical Characteristics of Piezoelectric Ceramic for Ultrasonic Oscillator Application (초음파 진동자 응용을 위한 압전 세라믹의 유전 및 전기적 특성)

  • 이수호;민석규;윤광희;류주현;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.200-203
    • /
    • 2000
  • The application of the ultrasonic nozzle has been extended because it is possible atomization of liquid material. In this study, the characteristics of the ultrasonic nozzle and ceramic oscillator were investigated. The oscillator for the ultrasonic nozzle were made piezoelectric ceramic of Pb[($Sb_{1/2}$ $Nb_{1/2}$)$_{0.035}$-($Mn_{1/3}$$Nb_{2/3}$)$_{0.065}$-($Zr_{0.49}$$Ti_{0.51}$)$_{0.90}$]$O_3$. The electromechanical coupling factor($k_p$) and mechanical quality factor(Qm) showed the values of 0.555, 1, 214 respectively when the Zr/Ti ratio was 49/51. Moreover, this oscillator will have the temperature stability because it's curie temperature is 322[$^{\circ}C$]. The driving current of ultrasonic nozzle showed the value of 80[mA] when the driving time was lO[min.]. Also, The surface temperature of ceramic oscillator showed 80[$^{\circ}C$] at driving time lO[min.] We knew that the ultrasonic nozzle had stabile driving above 10[min.].

  • PDF

RESISTANCE ESTIMATION OF A PWM-DRIVEN SOLENOID

  • Jung, H.G.;Hwang, J.Y.;Yoon, P.J.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.249-258
    • /
    • 2007
  • This paper proposes a method that can be used for the resistance estimation of a PWM (Pulse Width Modulation)-driven solenoid. By using estimated solenoid resistance, the PWM duty ratio was compensated to be proportional to the solenoid current. The proposed method was developed for use with EHB (Electro-Hydraulic Braking) systems, which are essential features of the regenerative braking system of many electric vehicles. Because the HU (Hydraulic Unit) of most EHB systems performs not only ABS/TCS/ESP (Electronic Stability Program) functions but also service braking function, the possible duration of continuous solenoid driving is so long that the generated heat can drastically change the level of solenoid resistance. The current model of the PWM-driven solenoid is further developed in this paper; from this a new resistance equation is derived. This resistance equation is solved by using an iterative method known as the FPT (fixed point theorem). Furthermore, by taking the average of the resistance estimates, it was possible to successfully eliminate the effect of measurement noise factors. Simulation results showed that the proposed method contained a sufficient pass-band in the frequency response. Experimental results also showed that adaptive solenoid driving which incorporates resistance estimations is able to maintain a linear relationship between the PWM duty ratio and the solenoid current in spite of a wide variety of ambient temperatures and continuous driving.

Evaluation of Effectiveness on Delineation System Using Virtual Driving Simulator (가상주행 시뮬레이터를 활용한 시선유도시설 효과평가 연구)

  • Park, Jejin;Kim, Ducknyung;Park, Yongjin;Song, Wonchul
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.163-171
    • /
    • 2017
  • PURPOSES : Traffic safety facilities are used to prevent traffic accidents before they occur by providing drivers with information on traffic situations and the geometric design of roads. However, some facilities not defined in guidelines do not meet installation criteria, yet are being installed and used in order to increase efficiency in traffic flow and prevent traffic accidents in a specific expressway zone. In this study, we have evaluated the effect of delineation system which are not defined in the guideline criteria. METHODS : Different virtual scenarios were created for roads using expressway median barrier chevron signs, with a driving simulator used to evaluate the installation and operational effect of such signs. Ten experiments were performed with left- and right-curved roads at curve radius intervals of 500 m, from 500 m to 2,500 m. RESULTS : For sections with a curve radius of more than 1,500 m, drivers had a clear tendency toward stable driving regardless of delineation system. When a chevron sign is installed on a protection fence in the road curving left, an expanded installation is recommended up to the section with a curve radius of 1,000 m. According to the analysis results for the RHB (Relative High Beta spectrum), driving concentration also improved up to a curve radius of 1,000 m. CONCLUSIONS :The experiment result indicates the extent of biasing within a lane and the manipulation amount of steering handle, were analyzed and found to be affected by curve radius and road alignment regardless of delineation system.

A Basic Study of Obstacles Extraction on the Road for the Stability of Self-driving Vehicles (자율주행 차량의 안전성을 위한 도로의 장애물 추출에 대한 기초 연구)

  • Park, Chang min
    • Journal of Platform Technology
    • /
    • v.9 no.2
    • /
    • pp.46-54
    • /
    • 2021
  • Recently, interest in the safety of Self-driving has been increasing. Self-driving have been studied and developed by many universities, research centers, car companies, and companies of other industries around the world since the middle 1980s. In this study, we propose the automatic extraction method of the threatening obstacle on the Road for the Self-driving. A threatening obstacle is defined in this study as a comparatively large object at center of the image. First of all, an input image and its decreased resolution images are segmented. Segmented areas are classified as the outer or the inner area. The outer area is adjacent to boundaries of the image and the other is not. Each area is merged with its neighbors when adjacent areas are included by a same area in the decreased resolution image. The Obstacle area and Non Obstacle area are selected from the inner area and outer area respectively. Obstacle areas are the representative areas for the obstacle and are selected by using the information about the area size and location. The Obstacle area and Non Obstacle area consist of the threatening obstacle on the road. Through experiments, we expect that the proposed method will be able to reduce accidents and casualties in Self-driving.

Uncertainty Sequence Modeling Approach for Safe and Effective Autonomous Driving (안전하고 효과적인 자율주행을 위한 불확실성 순차 모델링)

  • Yoon, Jae Ung;Lee, Ju Hong
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.9-20
    • /
    • 2022
  • Deep reinforcement learning(RL) is an end-to-end data-driven control method that is widely used in the autonomous driving domain. However, conventional RL approaches have difficulties in applying it to autonomous driving tasks due to problems such as inefficiency, instability, and uncertainty. These issues play an important role in the autonomous driving domain. Although recent studies have attempted to solve these problems, they are computationally expensive and rely on special assumptions. In this paper, we propose a new algorithm MCDT that considers inefficiency, instability, and uncertainty by introducing a method called uncertainty sequence modeling to autonomous driving domain. The sequence modeling method, which views reinforcement learning as a decision making generation problem to obtain high rewards, avoids the disadvantages of exiting studies and guarantees efficiency, stability and also considers safety by integrating uncertainty estimation techniques. The proposed method was tested in the OpenAI Gym CarRacing environment, and the experimental results show that the MCDT algorithm provides efficient, stable and safe performance compared to the existing reinforcement learning method.

Design and Performance Evaluation of Electro-rheological Shock Absorber for Electronic Control Suspension (전자제어 현가장치를 위한 전기유변유체 쇽 업소버의 설계 및 성능평가)

  • Sung, Kum-Gil;Choi, Seung-Bok;Park, Min-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.444-452
    • /
    • 2010
  • This paper presents design and performance evaluation of electro-rheological(ER) shock absorber for electronic control suspension(ECS). In order to achieve this goal, a cylindrical ER shock absorber that satisfies design specifications for a mid-sized commercial passenger vehicle is designed and manufactured to construct ER suspension system for ECS. After experimentally evaluating dynamic characteristics of the manufactured ER shock absorber, the quarter-vehicle ER suspension system consisting of sprung mass, spring, tire and the ER shock absorber is constructed in order to investigate the ride comfort and driving stability. After deriving the equations of the motion for the proposed quarter-vehicle ER suspension system, the skyhook controller is implemented for the realization of quarter-vehicle ER suspension system. In order to present control performance of ER shock absorber for ECS, ride comfort and driving stability characteristics such as vertical acceleration and tire deflection are experimentally evaluated under various road conditions and presented in both time and frequency domain.

A Six-Phase CRIM Driving CVT using Blend Modified Recurrent Gegenbauer OPNN Control

  • Lin, Chih-Hong
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1438-1454
    • /
    • 2016
  • Because the nonlinear and time-varying characteristics of continuously variable transmission (CVT) systems driven by means of a six-phase copper rotor induction motor (CRIM) are unconscious, the control performance obtained for classical linear controllers is disappointing, when compared to more complex, nonlinear control methods. A blend modified recurrent Gegenbauer orthogonal polynomial neural network (OPNN) control system which has the online learning capability to come back to a nonlinear time-varying system, was complied to overcome difficulty in the design of a linear controller for six-phase CRIM driving CVT systems with lumped nonlinear load disturbances. The blend modified recurrent Gegenbauer OPNN control system can carry out examiner control, modified recurrent Gegenbauer OPNN control, and reimbursed control. Additionally, the adaptation law of the online parameters in the modified recurrent Gegenbauer OPNN is established on the Lyapunov stability theorem. The use of an amended artificial bee colony (ABC) optimization technique brought about two optimal learning rates for the parameters, which helped reform convergence. Finally, a comparison of the experimental results of the present study with those of previous studies demonstrates the high control performance of the proposed control scheme.

Optimum Design of Vehicle Powertrain Mounting System (자동차용 파워트레인 마운팅 시스템의 최적설계)

  • Kim, J.H.;Lee, S.J.;Lee, W.H.;Kim, J.R.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.33-38
    • /
    • 2010
  • Technology of vehicle industry has been developing and it is required a better vehicle performance than before. Therefore, the consumers are asking not only an economic efficiency, functionality, polished design, ride comfort and silence but also a driving stability. The ride comfort, silence and driving stability are influenced by the size of vehicle and various facilities. But the principal factor is a room noise and vibration sensed by a driver and passenger. Thus, the NVH of vehicle has been raised and used as a principal factor for evaluation of vehicle performance. The primary objective of this study is an optimized design of powertrain mounting system. To optimized design was applied MSC.Nastran optimization modules. Results of dynamic analysis for powertrain mounting system was investigated. By theses results, design variables was applied 12 dynamic spring constant. And the weighting factor according to translational displacement and rotational displacement applied 3 cases. The objective function was applied to minimize displacement of powertrain. And the design variable constraint was imposed dynamic spring constant ratio. The constraint of design variable for objective function was imposed bounce displacement for powertrain.

Design criteria of wind barriers for traffic -Part 1: wind barrier performance

  • Kwon, Soon-Duck;Kim, Dong Hyawn;Lee, Seung Ho;Song, Ho Sung
    • Wind and Structures
    • /
    • v.14 no.1
    • /
    • pp.55-70
    • /
    • 2011
  • This study investigates the design criteria required for wind barriers to protect vehicles running on an expressway under a high side wind. At the first stage of this study, the lateral deviations of vehicles in crosswinds were computed from the commercial software, CarSim and TruckSim, and the critical wind speeds for a car accident were then evaluated from a predefined car accident index. The critical wind speeds for driving stability were found to be 35 m/s for a small passenger car, yet 30 m/s for a truck and a bus. From the wind tunnel tests, the minimum height of a wind barrier required to reduce the wind speed by 50% was found to be 12.5% of the road width. In the case of parallel bridges, the placement of two edge wind barriers plus one wind barrier at center was recommended for a separation distance larger than 20 m (four lanes) and 10 m (six lanes) respectively, otherwise two wind barriers were recommended.