• Title/Summary/Keyword: Driving pressure

Search Result 665, Processing Time 0.03 seconds

Comparison of the Symmetry of Buttock Pressure during Simulated Driving between Heathy Adults and Patients with Stroke

  • Shin, Hwa-Kyung;Lee, Du-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.4
    • /
    • pp.218-222
    • /
    • 2017
  • Purpose: Driving is an important activity that is affected by various motor and cognitive deficits after stroke. On the other hand, there is no standard screening tool to evaluate the sitting asymmetry during driving, which is the stereotyped postural characteristic observed in patients with stroke. Therefore, this study compared the buttock pressure during simulated driving between healthy adults and patients with stroke. Methods: Ten post-stroke patients and ten healthy subjects participated in the experiment. The participants experienced simulated driving of 6.1 km during approximately 5 minutes for adaptation. The driving scenario consisted of 3.5 km urban traffic conditions, 10 km straight highway, and 7 km curved or hilly rural roads. Force sensitive application (FSA) was used to analyze the distribution of the buttock pressure on the driver's seat. The symmetry index (SI) was determined using the average buttock pressure of each side of the buttock. The closer SI is to zero, the higher the symmetry of buttock pressure. Results: These studies showed that the SI of healthy subjects was significantly closer to zero than that of the stroke patients. Conclusion: The buttock pressure of the stroke patients showed more asymmetry than that of the healthy subjects during simulated driving. Therefore, a therapeutic approach is needed for symmetrical sitting to improve the driving performance.

Driving Characteristics of a 1 Tube 2 Chamber Bent Silkworm Type Dyeing Machine (1 튜브 2 챔버 Bent Silkworm형 염색기의 구동특성)

  • 이춘길;성우경;이광수
    • Textile Coloration and Finishing
    • /
    • v.11 no.2
    • /
    • pp.64-74
    • /
    • 1999
  • The driving characteristics of the 1 tube 2 chamber bent silkworm type dyeing machine are reported. This dyeing machine is a newly developed energy saving machine. In this study, the driving characteristics of the 1 tube 2 chamber bent silkworm type dyeing machine are examined. Specially the relationship between main body pressure and the electric current of the blower motor, the relationship between main body pressure and the air pressure of the blower nozzle, the effect of the air pressure of the blower on the running speed of the fabric, and the effect of main body temperature were discussed experimentally. Through the experimental data, the following results were obtained. 1. Blower motor electric current and blower nozzle air pressure increased as main body pressure increased due to the temperature increase of the main body. 2. The running speed of the fabric increased as blower nozzle air pressure increased. The difference in running speed between winch reel driving and no winch reel driving at a blower frequency of 60Hz was higher than that of 70Hz. 3. The electric current of the blower rioter and blower nozzle air pressure increased rapidly at the initial state. As the experimental time passed, the main body pressure increased slowly. as the main body temperature increased.

  • PDF

Effect of the Power Steering System Driving Torque on Vehicle Fuel Economy in a Passenger Car (Power Steering System의 구동력이 차량 모드주행연비에 미치는 영향)

  • Kim Namkyun;Han Changho;Kim Wooseok;Lee Jonghwa;Park Jinil;Park Kyungseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.60-67
    • /
    • 2006
  • To improve the vehicle fuel economy, various technologies have been studied. Meanwhile it deteriorates fuel economy that the increased driving torque for Power Steering System (PSS) due to weighted vehicle and widened tire for low speed driving and parking. So the larger driving torque for PSS is, the lower fuel economy is. Therefore, the study about the effect of the driving torque for PSS and the engine total friction must be preceded to improve the vehicle fuel economy. In this study, a PSS module separated from the vehicle is used to measure the driving torque for PSS with respect to the pressure of PSS. The result shows that the driving torque for PSS was in direct proportion to the pressure of PSS 3 (N-m) driving torque for PSS vs. 10 (bar) pressure of PSS, and 8 (N-m) vs. 40 (bar). In addition, the driving torque and pressure for PSS was measured according to the engine speed in the component test condition which was in the vehicle condition. Measuring the driving torque for PSP in the vehicle condition was established by using the VeFAS which was a fuel economy analyzer developed in our lab and installing PSS By-pass line. The effect of the driving torque for PSS on the vehicle fuel economy was analyzed with FTP-75 cold start mode.

Driving Characteristics of Pneumatic Cylinder with Relief Valve Cushion Devices (릴리프밸브 쿠션기구 내장형 공기압 실린더의 구동 특성)

  • Kim, Do Tae
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.7-13
    • /
    • 2016
  • This paper presents the meter-out and meter-in speed control characteristics of a pneumatic cylinder with relief valve type cushion device. The piston displacement and velocity are measured to investigate high speed driving performance with variation of the pressure setting in relief valve, air supply pressure, load mass, the supply and exhaust flow rate from the cylinder. Also, the internal pressures and temperatures driving pressure and cushion chamber are measured. The piston displacements and velocities of meter-out and meter-in control are compared experimentally determined data. A comparison experimental data meter-out and meter-in control show that a relief valve type cushion device is suitable for high speed pneumatic cylinders. The desired response characteristics of piston displacement and velocity are satisfactory adjust the pressure setting of a relief valve with varying system parameters such as air supply pressure, load mass and controlled flow rate.

Effect of Slip on Tractive Performance of Driving Wheel (구동륜 슬립이 견인성능에 미치는 영향)

  • 박원엽
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.234-243
    • /
    • 2002
  • When a vehicle is operated over sort terrain, torque(or soil thrust) applied to driving wheel brings about shear displacement far soil due to compression and shear failure of soil under tire. This shear displacement give rise to slip and a additional sinkage due to slip. This additional sinkage is usually referred to as slip-sinkage. The slip-sinkage is affected by soil conditions and inflation pressure of tire. This slip-sinkage influence tractive performance on driving wheel . We conducted the experimental study far investigating the effect of slip on sinkage and tractive performance of driving wheel, such as motion resistance, thrust and drawbar pull. The experiment was carried out over three different soil conditions(soft, hard and very hard soil) far a tire with three levels of inflation pressure(120kPa, 240kPa and 360kPa). The results of this study show qualitatively slipsinkage characteristics and slip-tractive performance relationships of driving wheel with soil conditions and inflation pressure of tire.

Phase Matching of Pressure Wave in a Drop-On-Demand Inkjet Print Head (요구 적출형 잉크젯 프린트 헤드에서의 압력파 위상 정합)

  • Kim, Myong-Ki;Hwang, Jun-Young;Lee, Sang-Ho;Kang, Kyung-Tae;Kang, Heui-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.116-125
    • /
    • 2008
  • Inkjet printing technology with a drop-on-demand (DOD) inkget head technology has been recognized as one of versatile and low cost manufacturing tools in the electronics industry. Concerned with control of driving signal, however, general strategy to optimize jetting stability has not been understood well, because of the inherent complex multi-physics nature in inkjet phenomena. Motivated by this, present study investigates the effect of driving waveforms of piezoelectric head on jetting characteristics of DOD inkjet system focused on jetting stability with phase matching of pressure waves in the print head. The results show that velocities and volumes of the ink jetted droplets were linear relations with the driving signal's maximum voltage, while periodic behaviors are observed with the driving signal's pulse widths.

Phase Matching of Pressure Wave in a Drop-On-Demand Inkjet Print Head (요구 적출형 잉크젯 프린트 헤드에서의 압력파 위상 정합)

  • Kim, Myong-Ki;Hwang, Jun-Young;Lee, Sang-Ho;Kang, Kyung-Tae;Park, Mun-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1444-1449
    • /
    • 2007
  • Inkjet printing technology with a drop-on-demand (DOD) inkjet head technology has been recognized as one of versatile and low cost manufacturing tools in the electronics industry. Concerned with control of driving signal, however, general strategy to optimize jetting stability has not been understood well, because of the inherent complex multi-physics nature in inkjet phenomena. Motivated by this, present study investigates the effect of driving waveforms of piezoelectric head on jetting characteristics of DOD inkjet system focused on jetting stability with phase matching of pressure waves in the print head. The results show that velocities and volumes of the ink jetted droplets were linear relations with the driving signal's maximum voltage, while periodic behaviors are observed with the driving signal's pulse widths.

  • PDF

Experimental Installation of Pressure Oscillation based on Pulse-driving Technique

  • YANG, Tian-hao;LIU, Pei-jin;JIN, Bing-ning
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.58-61
    • /
    • 2015
  • Under the background of combustion instability in solid rocket motor, to study the relationship between pressure oscillations and dynamic process of propellant flames, it is necessary to simulate an oscillation environment with certain frequency, amplitude and duration. This paper presents an experimental installation of pressure oscillation based on pulse-driving technique, with which pressure oscillations features under different pulse-driving conditions were compared and analyzed. For the pulse-driver applied in this paper, a pressure oscillation with 0.15s-0.5s duration, 179Hz-210Hz first order frequency, 0.04MPa-0.35MPa amplitude is simulated. The test results show that an oscillation with higher frequency and lager amplitude can be obtained when pulse-driver is installed on the top of the installation cavity, while on the side, an oscillation with a longer duration and approximate cavity natural frequency can be simulated.

Study on Driving System for Tidal Flat Vehicle (연약갯벌 차량용 주행장치 개발에 관한 연구)

  • Yeu, Tae-Kyeong;Hong, Sup;Kim, Hyung-Woo;Choi, Jong-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.72-78
    • /
    • 2010
  • This paper presents a design approach of driving system for tidal flat vehicle. Firstly, topographic and geological survey of tidal flat zone was accomplished. 'Anac' located in the west-south coast of South Korea was chosen for the survey area. From the survey, the basic design data such as distribution of gullies size and bearing pressure was obtained. To figure out the shape of driving system, numerical simulations were carried out. Through the numerical dynamic simulations using $Recurdyn^{TM}$, the performance of various concepts of driving system was analyzed. From the results, we propose the conceptual design with the functions: a) low contact pressure, b) powerful driving force transmission, c) adaptation to the ground undulation. To satisfy these functional requirements, the driving system adopts rubber tracks, sprockets, tires and suspensions. The static structural analysis of the frame structure was executed as well, from which the detailed design was drawn out. To validate the performance of the designed driving system, the test vehicle which has gasoline engine of 27HP and mechanical transmission was constructed. The driving tests of the vehicle were performed twice at the "Anac" area, and unveiled its capability.

A Study on Pseudo DC Discharging Electronic Bal lasts for Fluorescent Lamp (의사 DC 방전용 형광등 전자 안정기에 관한 연구)

  • 이범익;정화진;지철근
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.11-15
    • /
    • 1992
  • Currently-using low-pressure lamps are usually drivel by the AC power supply. There are good and bad points according to high or low frequency in AC power driving type. For the low-pressure lamps, its efficiency increases and flicker decreases when it ignites at high frequency. So we already use the high-frequency electronic ballast of the low-pressure discharge lamps broadly. But there are EMI interference in high-frequency driving type because of giving the fluorescent lamp the high- frequency current. So recently, we have a tendency to compensate for that defects by DC driving method. As follows, we suggest pseudo DC discharging electronic bar lasts for fluorescent lamps which have the characteristics of high efficiency and no flicker by driving constant current boosted square wave.

  • PDF