• Title/Summary/Keyword: Driving module

Search Result 333, Processing Time 0.022 seconds

Development of Energy Regeneration Algorithm using Electro-Hydraulic Braking Module for Hybrid Electric Vehicles (회생제동 전자제어 유압모듈을 이용한 하이브리드 차량의 에너지 회수 알고리즘 개발)

  • Yeo, H.;Kim, H.S.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.4
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, an energy regeneration algorithm is proposed to make the maximum use of the regenerative braking energy for a parallel hybrid electric vehicle(HEV) equipped with a continuous variable transmission(CVT). The regenerative algorithm is developed by considering the battery state of charge(SOC), vehicle velocity and motor capacity. The hydraulic module consists of a reducing valve and a power unit to supply the front wheel brake pressure according to the control algorithm. In order to evaluate the performance of the regenerative braking algorithm and the hydraulic module, a hardware-in-the-loop simulation (HILS) is performed. In the HILS system, the brake system consists of four wheel brakes and the hydraulic module. Dynamic characteristics of the HEV are simulated using an HEV simulator. In the HEV simulator, each element of the HEV powertrain such as internal combustion engine, motor, battery and CVT is modelled using MATLAB/$Simulink^{(R)}$. In the HILS, a driver operates the brake pedal with his or her foot while the vehicle speed is displayed on the monitor in real time. It is found from the HILS that the regenerative braking algorithm and the hydraulic module suggested in this paper provide a satisfactory braking performance in tracking the driving schedule and maintaining the battery state of charge.

  • PDF

Driving Information System of Bicycle by Using 3-Axis Acceleration Sensor (3축 가속도 센서를 응용한 자전거 주행정보 시스템)

  • Bae, Sung-Yul;Yi, Seung-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.198-203
    • /
    • 2012
  • In this paper, the driving information system of the bicycle has been studied by using the 3-axis acceleration sensor. The sensor module composed of 3-axis acceleration sensor and MCU(Microcontroller Unit) was mounted onto the handle of bicycle and the experiments were conducted on the flatland, uphill and downhill of bicycle road. Three axis acceleration values were converted to the pitch and roll angles, then four major compensation methods have been applied to achieve meaningful data for driving information system. The experimental results of pitch angles showed 2.46, -1.26, 7.79 degrees in case of flatland, uphill, downhill, respectively. When the steering handle turned to the left direction, roll angles showed -29.35, -41.67, -36.98 degrees at each road condition. With the right-turn, roll angles presented 20.05, 33.75, 24.44 degrees in case of flatland, uphill, and downhill, respectively. The pitch angle has been increased more than 40 degrees at stop mode. By using the change of pitch and roll angles, we could obtain the driving information system of bicycle successfully.

Co-Pilot Agent for Vehicle/Driver Cooperative and Autonomous Driving

  • Noh, Samyeul;Park, Byungjae;An, Kyounghwan;Koo, Yongbon;Han, Wooyong
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.1032-1043
    • /
    • 2015
  • ETRI's Co-Pilot project is aimed at the development of an automated vehicle that cooperates with a driver and interacts with other vehicles on the road while obeying traffic rules without collisions. This paper presents a core block within the Co-Pilot system; the block is named "Co-Pilot agent" and consists of several main modules, such as road map generation, decision-making, and trajectory generation. The road map generation builds road map data to provide enhanced and detailed map data. The decision-making, designed to serve situation assessment and behavior planning, evaluates a collision risk of traffic situations and determines maneuvers to follow a global path as well as to avoid collisions. The trajectory generation generates a trajectory to achieve the given maneuver by the decision-making module. The system is implemented in an open-source robot operating system to provide a reusable, hardware-independent software platform; it is then tested on a closed road with other vehicles in several scenarios similar to real road environments to verify that it works properly for cooperative driving with a driver and automated driving.

Factors Related to Velocity Perception in a Graphic Simulator (시뮬레이터의 그래픽모듈에 대한 속도감 인자 분석)

  • Son, Kwon;Choi, Kyung-Hyun;Eom, Sung-Suk;Hong, Sung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.121-130
    • /
    • 2001
  • This paper addresses a method for evaluating perceived velocities of the graphic module in a driving simulator. The major two graphic factors associated with perceived velocities are analyzed: they are the lateral distance between a virtual driver and an array of environmental objects and the textural density of these objects. A graphical representation of a vehicle and its surrounding environment are constructed by employing a three-dimensional tool, Pro/ENGINEER and a virtual environment, dVISE. Using the developed virtual driving environment, experiments have been carried out to formulate the relationship between velocity perception and each factor. Based on the experimental results, nonlinear regression equations are derived to show how the perceived velocities are dependent upon distance/density.

  • PDF

An Improvement of Sensorless Driving Performance for Brushless DC Motor Using Variable PWM Switching Frequency (가변 PWM 스위칭 주파수를 이용한 브러시리스 직류전동기의 센서리스구동 특성개선)

  • Woo, Hyuk-J.;Song, Myung-H.;Park, Kyu-N.;Yeo, Hyeong-G.;Kim, Kyoung-M.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2534-2536
    • /
    • 1999
  • This paper suggested a new sensorless driving strategy for brushless de motor which can improve the conventional degradation of highspeed operating performances, lowspeed operating performances and starting performances caused by applying general single pwm switching frequency. By varying PWM switching frequency during operating time, the proposed method can get some desired upper performances. For confirming the validity of the proposed method, the sensorless driving system is implemented with an rPM module and 87c196MC micro controller.

  • PDF

EMI Debugging Technique of LED Lighting Module (LED 조명기구의 EMI 디버깅 기술)

  • Kim, Jin Sa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.151-154
    • /
    • 2020
  • Radiation noise due to EMI noise generated by the driving circuits of LED lighting devices in a medical imaging room was reduced by decreasing the noise source in the driving circuits and changing the number of corrections in EMI filters. Noise attenuation and filter changes enabled driving circuits that reduced the electromagnetic waves. Such circuits were efficiently designed by using capacitors and inverters in a given space. Therefore, the malfunction of radiation devices can be minimized by using EMI-reduction filter circuits, and reliable operation of medical devices can be expected by blocking electromagnetic waves.

A Study on the Implementation of MAC Layer of Token-passing Bus Network Based on Mini-MAP (Mini-MAP을 채택한 토큰-패싱 버스 네트워크의 MAC계층 구현에 관한 연구)

  • 강문식;조병선;박민용;이상배
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.5
    • /
    • pp.404-410
    • /
    • 1991
  • In this paper,a network interface unit of token-passing bus network and its driving software are implemented based on Mini-MAP. This network interface unit performs the function of MAC layer which is responsible for transmission and reception of frames as well as the management of logical ring. The driving software performs the management of data buffer and the report of errors, if ocoured, to the higher layer. Motorola MC68824 of is used as a TBC(Token Bus Controller) and Intel80186 as a CPU for network interface unit. The operation of network interface unit is verified by self-test which checks the functioning of TBC and CPU. In addition each module of driving software is tested to check the functions regarding transmission and reception of frames.

  • PDF

Flip Chip Interconnection Method Applied to Small Camera Module

  • Segawa, Masao;Ono, Michiko;Karasawa, Jun;Hirohata, Kenji;Aoki, Makoto;Ohashi, Akihiro;Sasaki, Tomoaki;Kishimoto, Yasukazu
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.10a
    • /
    • pp.39-45
    • /
    • 2000
  • A small camera module fabricated by including bare chip bonding methods is utilized to realize advanced mobile devices. One of the driving forces is the TOG (Tape On Glass) bonding method which reduces the packaging size of the image sensor clip. The TOG module is a new thinner and smaller image sensor module, using flip chip interconnection method with the ACP (Anisotropic Conductive Paste). The TOG production process was established by determining the optimum bonding conditions for both optical glass bonding and image sensor clip bonding lo the flexible PCB. The bonding conditions, including sufficient bonding margins, were studied. Another bonding method is the flip chip bonding method for DSP (Digital Signal Processor) chip. A new AC\ulcorner was developed to enable the short resin curing time of 10 sec. The bonding mechanism of the resin curing method was evaluated using FEM analysis. By using these flip chip bonding techniques, small camera module was realized.

  • PDF

The Design and Implementation of the Mutual Message Processing between WME Module and MLME Module for Vehicle Communication Technology (차량 통신 기술을 위한 WME 모듈과 MLME 모듈 간의 상호 메시지 처리과정 설계 및 구현)

  • Jang, Chung Ryong;Lee, Dae Sik;Lee, Yong Kwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.63-71
    • /
    • 2013
  • WAVE(Wireless Access for Vehicular Environment) System is a communication technology to monitor system failure and vehicle functions and management services to prevent possible incidents of driving a vehicle. In this paper, we have designed and implemented the mutual message processing through parameter between WME management module that manages WAVE system and MLME that manages the upper layer MAC(Media Access Control) module. Also, in order to verify the validity, we have carried out experiments to compare the speed of data processing by dividing data of 1Mbyte, 2Mbyte, 3Mbyte into the packets of 2KByte and 4KByte. Experiments data processing speed of 2KByte packet were shown about 173.62ms in 1MByte, 2MByte about 352.61ms, 3MByte about 550.13ms and, data processing speed of 4KByte packet, 1MByte approximately 87.56ms, 2MByte about 177.94ms, 3MByte about 277.18ms. Therefore, in WAVE system, the mutual messages processing through the parameters between WME and MLME module can be utilized in the various service of ITS(Intelligent Transportation Systems) depending on the speed of data processing.

Design and Control of Anthropomorphic Robot hand (인간형 다지 다관절 로봇 핸드의 개발)

  • Chun, Joo-Young;Choi, Byung-June;Chae, Han-Sang;Moon, Hyung-Pil;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.102-109
    • /
    • 2010
  • In this study, an anthropomorphic robot Hand, called "SKKU Hand III" is presented. The hand has thirteen DOF(Degree-Of-Freedom) and is designed based on the skeletal structure of the human hand. Each finger module(except thumb module) has three DOF and four joints with a saddle joint mechanism which has two DOF at the base joint. Two distal joints of the finger module are mechanically coupled by a timing belt and pulleys. The thumb module is composed of a finger module and an additional actuator, which makes it possible to realize the opposition between the thumb and the other fingers. In addition, the palm DOF of the human hand is mimicked with a spatial link mechanism between the index finger and the thumb. Thus, it can grasp objects more stably and more strongly. For the modularization of the robotic hand all the driving circuits are embedded in the hand, and only the communication lines supporting CAN protocol with DC power cable are given as an interface. Therefore, it is possible to apply it to any robot system the interface. To validate the feasibility of the SKKU Hand III, a series of the representative grasp experiments such as power, precision, intermediate grasp etc. are carried out with the object around us and its operation is demonstrated.