• Title/Summary/Keyword: Driving assistance system

Search Result 124, Processing Time 0.02 seconds

A Study for Driving Mechanism Evaluation of the Lane Keeping Assistance System (차선유지지원장치 작동 메커니즘 평가에 관한 연구)

  • Chung, Seung-Hwan;Kim, Jeong-Min;Kwon, Seong-Jin;Lee, Bong-Hyun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.69-74
    • /
    • 2013
  • LKAS(Lane Keeping Assistance System) main function is to support the driver in keeping the vehicle within the current lane. Therefore, this system is able to reduce the driver workload with assisting the driver during driving. In this paper, we presented on study for test procedures and evaluation methods of the LKAS. The vehicle test conducted on straight road, left curve, right curve and four different types of lane under various vehicle speeds. This study proposed the LKAS system test procedures and methods that we are able to identify LKAS driving mechanism and performance.

Real-Time Safety Driving Assistance System Based on a Smartphone

  • Kang, Joon-Gyu;Kim, Yoo-Won;Jun, Moon-Seog
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.8
    • /
    • pp.33-39
    • /
    • 2017
  • In this paper, we propose a method which implements warning to drivers through real-time analysis of risky and unexpected driver and vehicle behavior using only a smartphone without using data from digital tachograph and vehicle internal sensors. We performed the evaluation of our system that demonstrates the effectiveness and usefulness of our method for risky and unexpected driver and vehicle behavior using three information such as vehicle speed, azimuth and GPS data which are acquired from a smartphone sensors. We confirmed the results and developed the smartphone application for validate and conducted simulation using actual driving data. This novel functionality of the smartphone application enhances drivers' situational awareness, increasing safety and effectiveness of driving.

Driver Assistance System for Backward Motion Control of a Car with a Trailer (차량견인 트레일러의 후진제어를 위한 운전자 보조 시스템)

  • Roh, Jae-Il;Chung, Woo-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.286-293
    • /
    • 2010
  • The trailer system offers efficiency of transportation capability. However, it is difficult to control the backward motion. It is an open loop unstable problem. To solve this problem, we are proposed the driver assistance system. Driver assistance system assists a driver to control the backward motion of trailer system as if forward motion. A driver only secure the rear view of last passive trailer, and select the control input to drive the last passive trailer. The driver assistance system converts the control input of the driver into velocity and steering angle of the vehicle using the inverse kinematics. It is possible by electronic control input devices and the rear view camera. Effectiveness of driving assistance system is verified by the simulation and the experiments.

Intelligent Driver Assistance Systems Using Biosignal (생체신호계측을 이용한 지능형 운전보조 시스템)

  • Lee, Sang-Ryong;Park, Keun-Young;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.12
    • /
    • pp.1186-1191
    • /
    • 2007
  • Human driver monitoring system is one of the most important systems for the safety in driving vehicles, and therefore driver assistance system has gained much attention during the last decade. This paper proposed an intelligent driver assistance system which monitors human driver's states from bio-signals such as ECG and Blood Pressure. The proposed system used mamdani fuzzy inference to evaluate the driver's mental strain and generated warning signals to the driver. The approach using bio-signals in driver assistance system is the main issue of the related systems and the preliminary results showed the possibility of further research topics in developing more intelligent embedded systems with bio-signal feedback.

Development of a Cause Analysis Program to Risky Driving with Vision System (Vision 시스템을 이용한 위험운전 원인 분석 프로그램 개발에 관한 연구)

  • Oh, Ju-Taek;Lee, Sang-Yong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.149-161
    • /
    • 2009
  • Electronic control systems of vehicle are rapidly developed to keep balance of a driver`s safety and the legal, social needs. The driver assistance systems are putted into practical use according to the cost drop in hardware and highly efficient sensor, etc. This study has developed a lane and vehicle detection program using CCD camera. The Risky Driving Analysis Program based on vision systems is developed by combining a risky driving detection algorithm formed in previous study with lane and vehicle detection program suggested in this study. Risky driving detection programs developed in this study with information coming from the vehicle moving data and lane data are useful in efficiently analyzing the cause and effect of risky driving behavior.

  • PDF

A Study on the Improvement of Vehicle Recognition Rate of Vision System (Vision 시스템의 차량 인식률 향상에 관한 연구)

  • Oh, Ju-Taek;Lee, Sang-Yong;Lee, Sang-Min;Kim, Young-Sam
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.3
    • /
    • pp.16-24
    • /
    • 2011
  • The vehicle electronic control system is being developed as the legal and social demand for ensuring driver's safety is rising. The various Driver Assistance Systems with various sensors such as radars, camera, and lasers are in practical use because of the falling price of hardware and the high performance of sensor and processer. In the preceding study of this research, the program was developed to recognize the experiment vehicle's driving lane and the cars nearby or approaching the experiment vehicle throughout the images taken by CCD camera. In addition, the 'dangerous driving analysis program' which is Vision System basis was developed to analyze the cause and consequence of dangerous driving. However, the Vision system developed in the previous studyhad poor recognition rate of lane and vehicles at the time of passing a tunnel, sunrise, or sunset. Therefore, through mounting the brightness response algorithm to the Vision System, the present study is aimed to analyze the causes of driver's dangerous driving clearly by improving the recognition rate of lane and vehicle, regardless of when and where it is.

YOLO Driving Assistance System Using Model Car (모형차를 이용한 YOLO 주행 보조 시스템)

  • Kim, Jea-gyun;Heo, Hoon;Oh, Jeong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.671-674
    • /
    • 2018
  • In this study, we implement a YOLO driving assistance system using a model car. The YOLO is an object detection and recognition algorithm using deep running which is becoming an issue recently. The system alerts the lane departure by applying the image processing technology to the image acquired through the camera, recognizes the objects using the YOLO, and performs various functions according to the type of the object and the distance between the vehicle. the YOLO, which is superior to the existing object detection and recognition algorithm, improves the performance of the driving assist system without additional equipment. The driving assist system using the YOLO will ensure the safety of the driver with low cost.

  • PDF

Traffic Accident Type Classification and Characteristic Analysis Research to Develop Autonomous Vehicle Accident Investigation Guidelines Using the National Forensic Service Data Base (국과수 데이터베이스를 활용하여 자율주행차 사고조사 가이드라인 개발을 위한 교통사고 유형 분류 및 특성 분석 연구)

  • Byungdeok In;Dayoung Park;Jongjin Park
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.1
    • /
    • pp.35-41
    • /
    • 2024
  • In order to verify autonomous driving scenarios and safety, a lot of driving and accident data is needed, so various organizations are conducting classification and analysis of traffic accident types. In this study, it was determined that accident recording devices such as EDR (Event Data Recorder) and DSSAD (Data Storage System for Automated Driving) would become an objective standard for analyzing the causes of autonomous vehicle accidents, and traffic accidents that occurred from 2015 to 2020 were analyzed. Using the database system of IGLAD (Initiative for the Global Harmonization of Accident Data), approximately 360 accident data of EDR-equipped vehicles were classified and their characteristics were analyzed by comparing them with accident types of ADAS (Advanced Driver Assistance System)-equipped vehicles. It will be used to develop autonomous vehicle accident investigation guidelines in the future.

Study About the Crash Safety of Occupants According to the Reclining Postures and Impact Angle under MPDB Test Types (차대차 충돌평가(MPDB)에서 충돌 각도 및 젖힘자세 특성 등에 따른 승객 상해 연구)

  • Jeongmin In;Jaehong Ma;Hyungjin Chang;Joonho Jun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.3
    • /
    • pp.59-65
    • /
    • 2023
  • As advanced driving assistance system (ADAS) and autonomous driving performance continue to improve, existing crash accidents and crash types are changing. Accordingly, the collision angle and the seating posture of the occupant are changed. It is necessary to study how the occupant injury mechanism changes according to these different crash types. In this regard, a representative crash test mode was derived when the automatic emergency braking system (AEB), one of the autonomous driving performance, was applied to the representative car-to-car crash scenario in Korea. The derived crash test mode was used to analyse the mechanisms of collision injuries according to both impact angle and the occupant seating posture (reclined seat-back angle). The results obtained through this study can be utilized as reference data for the development of new crash evaluation methods and improvements in crash restraint systems for enhancing crash safety.

Localization Requirements for Safe Road Driving of Autonomous Vehicles

  • Ahn, Sang-Hoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.389-395
    • /
    • 2022
  • In order to ensure reliability the high-level automated driving such as Advanced Driver Assistance System (ADAS) and universal robot taxi provided by autonomous driving systems, the operation with high integrity must be generated within the defined Operation Design Domain (ODD). For this, the position and posture accuracy requirements of autonomous driving systems based on the safety driving requirements for autonomous vehicles and domestic road geometry standard are necessarily demanded. This paper presents localization requirements for safe road driving of autonomous ground vehicles based on the requirements of the positioning system installed on autonomous vehicle systems, the domestic road geometry standard and the dimensions of the vehicle to be designed. Based on this, 4 Protection Levels (PLs) such as longitudinal, lateral, vertical PLs, and attitude PL are calculated. The calculated results reveal that the PLs are more strict to urban roads than highways. The defined requirements can be used as a basis for guaranteeing the minimum reliability of the designed autonomous driving system on roads.