• Title/Summary/Keyword: Driving System Modeling

Search Result 222, Processing Time 0.026 seconds

A Study on the Driving System Using Ball Screw (볼나사를 이용한 이송계에 관한 연구)

  • 이상조;남원우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.981-984
    • /
    • 1995
  • The feed system using ball screw is constructed by ball screw, support bering and LM guide, and servo system for driving ball screw. AC servo motr drives ball screw which was connected by coupling. In this study, a new axial direction dynamic modeling of ball screw driving system was developed, and forced vibraition test using the impact hammer was experimented. The simulation result is compared with experimental result, which defines the reliability of mathematical modeling.

  • PDF

Modeling of BLDC Motor Driving System for Platform Screen Door Control applied Fuel Cell Power Generation System (연료전지 발전시스템을 이용한 승강장 스크린 도어 제어용 BLDC 전동기 구동 모델링)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.968-974
    • /
    • 2017
  • In this paper, modeling of brushless DC motor (BLDC) driving system for platform screen door control applied fuel cell power generation system has been proposed. At first the system configuration and operational principle of the developed fuel cell simulator has been investigated and the design of BLDC motor driving system is studied and the overall performance and dynamics of the proposed system could be effectively examined by simulation. PSIM simulation program is implemented to verify the performance and compatibility of the fuel cell power generation system and BLDC motor control system modeling.

Comparison of PID Controllers by Using Linear and Nonlinear Models for Control of Mobile Robot Driving System (모바일 로봇 구동 시스템 제어를 위한 선형 및 비선형 모델 기반 PID 제어기 성능 비교)

  • Jang, Tae Ho;Kim, Youngshik;Kim, Hyeontae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.3
    • /
    • pp.183-190
    • /
    • 2016
  • In this study, we conduct linear and nonlinear modeling of the DC motor driving system of a wheeled mobile robot, which is a nonlinear system involving dead zone, friction, and saturation. The DC motor driving system consists of a DC motor, a wheel, and gears. A linear DC motor driving system is modeled using a steady-state response and parameter measurements. A nonlinear DC motor driving model is identified with the use of the Hammerstein-Wiener method. By using these models, PID controllers for the DC motor system are then established. Each PID controller is applied as a low-level controller in order to achieve posture stabilization control for the real mobile robot. We also compare the performance of the proposed PID controllers in posture stabilization experiments by using several different final robot postures.

A Study on V2X Modeling for Virtual Testing of ADS Based on MIL Simulation (MILS 기반 ADS 기능 검증을 위한 V2X 모델링에 관한 연구)

  • Seong-Geun Shin;Jong-Ki Park;Chang-Soo Woo;Chang-Min Ye;Hyuck-Kee Lee
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.3
    • /
    • pp.34-42
    • /
    • 2023
  • Simulation-based virtual testing is known to be a major requirement for verifying the safety of autonomous driving functions. However, in the simulation environment, there is a difficulty in that all driving environments related to the autonomous driving system must be realistically modeled. In particular, C-ITS (Cooperative-Intelligent Transport Systems) is essential for urban autonomous driving of Lv.4, but the approach to modeling for C-ITS service in the MILS (Model in the Loop Simulation) environment is not yet clear. Therefore, this paper aims to deal with V2X (Vehicle to Everything) modeling methods to effectively apply C-ITS-based autonomous cooperative driving services in the MILS environment. First, major C-ITS services and use cases for autonomous cooperative driving are analyzed, and a modeling method of V2X signals for C-ITS service simulation is proposed. Based on the modeled V2X messages, the validity of the proposed approach is reviewed through simulations on the C-ITS service use case.

Prediction of Postural Sagging Observed During Driving in Korean Male Drivers (한국인 남성 운전자의 운전 자세에서 발생하는 몸통 처짐 현상에 관한 예측 모델 연구)

  • Oh, Youngtaek;Jung, Eui S.;Park, Sungjoon;Jeong, Seong Wook
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • In the vehicle design, the research on driving posture has stood out as one of the important issues. Recently, the research on 3D human modeling focused on more exact implementation of real driving posture. However, prediction of driving posture through the 3D human modeling fail to reflect on the model the phenomenon called sagging, which refers to the retraction or shrinking of the torso while driving. 30 male subjects participated in the experiment where total subjects were divided into four groups according to height percentile(under 50%ile, 51%ile to 75%ile, 76%ile to 95%ile, over 95%ile). The independent variables were seat back angle(4 levels) and seat pan angle(2 levels). The dependent variable was capacity or the degree of retraction of the torso. First this study measured the sagging capacity by using a paired T-test between erect and retracted posture. Secondly it was tried to find out significant anthropometric variables that were statistically correlated by the analysis of correlation. Finally, a prediction model was derived which explains the capacity of sagging.

The SOC, Capacity-fade, Resistance-fade Estimation Technique using Sliding Mode Observer for Hybrid Electric Vehicle Lithium Battery (하이브리드 자동차용 리튬배터리의 충전량, 용량감퇴, 저항감퇴 예측을 위한 슬라이딩 모드 관측기 설계)

  • Kim, Il-Song;Lhee, Chin-Gook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.839-844
    • /
    • 2008
  • A novel state of health estimation method for hybrid electric vehicle lithium battery using sliding mode observer has been presented. A simple R-C circuit method has been used for the lithium battery modeling for the reduced calculation time and system resources due to the simple matrix operations. The modeling errors of simple model are compensated by the sliding mode observer. The design methodology for state of health estimation using dual sliding mode observer has been presented in step by step. The structure of the proposed system is simple and easy to implement, but it shows robust control property against modeling errors and temperature variations. The convergence of proposed observer system has been proved by the Lyapunov inequality equation and the performance of system has been verified by the sequence of urban dynamometer driving schedule test. The test results show the proposed observer system has superior tracking performance with reduced calculation time under the real driving environments.

Hydraulic System Design and Vehicle Dynamic Modeling for the Development of a Tire Roller

  • Kim, Sang-Gyum;Kim, Jung-Ha;Lee, Woon-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.484-494
    • /
    • 2003
  • In this paper, we describe a hydraulic system design and vehicle dynamic modeling for development of tire roller traction, an essential aspect in the system analysis of tire rollers. Generally, tire rollers are one of the most useful types of machines employed in road construction, technically applied to many construction fields. We also conceptualize a new hydraulic and driving system as well as define the motion equations for dynamic and hydraulic analysis. First, we design the hydraulic circuit of the steering control and driving machine system, which can be employed to advance the performance of the lateral control, creating a prototype of construction equipment. Second, we formulate the hydraulic steering system model and hydraulic driving system model through tire roller system development technology. Finally, we validate the acquired performance results in actual tire roller equipment using the data acquisition system. These results may perhaps facilitate the establishment of priorities and design strategies for incremental introduction of tire roller technology into the vehicle and construction field.

Robust Control of Pneumatic Cylinder Driving System using Sliding Mode Controller (슬라이딩모드 제어기를 이용한 공기압 실린더 구동장치의 강인제어)

  • Jang, Ji-Seong;Han, Seung-Hun
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.101-109
    • /
    • 2017
  • The pneumatic driving system has advantages such as high output power per weight and low heat generation rate. However, it is difficult to control the position because of its strong non-linearity such as large friction forces compared to driving force, and heat transfer characteristics that change during operation. Therefore, in order to achieve the control objectives, a robust controller should be designed considering modeling error and model uncertainty. In this paper, a sliding mode controller is designed to improve the position control performance of pneumatic cylinder driving system. Experimental results show that the designed controller achieves the designed control objectives even if the model of the cylinder driving system, such as the initial pressure inside the cylinder and the initial position of the piston is changed.

Optimal Design Analysis of Driving Link-Mechanism and Development of Control Performance Estimation Program for Unbalance Heavy-Load Elevation Driving System; (구동 링크기구 최적설계 분석 및 불균형 대부하 고저 구동/제어 성능추정 프로그램 개발)

  • 최근국;이만형;안태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.614-617
    • /
    • 1995
  • The unbalance heavy-load elevation driving systems are composed of rotating link-mechanism and hydraulic cylinder which actuates elevation and compensates the static unbalance moment of supporting mechanism. Control and compensation of gun driving is very difficult because these mechanism imply highly nonlinearities due to hydraulic fluid characteristics and mechanical rotation of link-mechanism. In this study, through the analysis of manufactured link-mechanism, the optimal link-mechanism design of the elevating system is suggested. Also to estimate the control performance of the unbalance heavy-load elevation servo-control driving system, modeling and simulation of the system are carried out. To prove the reliability of performance estimation program,simulation results are compared with the experimental results. Both results are similar, therefore this program will be helpful to study the control performance improvement of the system.

  • PDF

Steady State Performance Analysis of the Multi-mode Power Transmission Systems Equipped on Passenger Car (승용차용 다중모드 동력 전달 시스템의 정상상태 성능분석)

  • Lim, Won-Sik;Park, Yun-Kyoung;Park, Sung-Cheon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.364-371
    • /
    • 2013
  • Because of the increases in international oil prices and the level of global warming, the automotive industry has much interest in developing green cars with high fuel efficiencies. In addition, researchers in Korea are actively responding to high oil prices and $CO_2$ emission regulations in many ways. One example is, the multi-mode hybrid system, which is being studied to improve its performance. Because a multi-mode hybrid system is able to overcome the weaknesses of a system that uses simple planetary gears, excellent fuel efficiency and driving performances are the key features of the system. This paper analyzes the driving performance of the power-train system of GM-2MT70, which consists of one engine, two electric motors, one simple planetary gear, one double planetary gear, two clutches, and two brakes. The driving performance of the system's steady state is analyzed using performance modeling. The dynamic performance is analyzed using Matlab Simulink.