• Title/Summary/Keyword: Driving Information System

Search Result 1,241, Processing Time 0.03 seconds

Indoor autonomous driving system based on Internet of Things (사물인터넷 기반의 실내 자율주행 시스템)

  • Seong-Hyeon Lee;Ah-Eun Kwak;Seung-Hye Lee;Tae-Kook Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.69-75
    • /
    • 2024
  • This paper proposes an IoT-based indoor autonomous driving system that applies SLAM (Simultaneous Localization And Mapping) and Navigation techniques in a ROS (Robot Operating System) environment based on TurtleBot3. The proposed autonomous driving system can be applied to indoor autonomous wheelchairs and robots. In this study, the operation was verified by applying it to an indoor self-driving wheelchair. The proposed autonomous driving system provides two functions. First, indoor environment information is collected and stored, which allows the wheelchair to recognize obstacles. By performing navigation using the map created through this, the rider can move to the desired location through autonomous driving of the wheelchair. Second, it provides the ability to track and move a specific logo through image recognition using OpenCV. Through this, information services can be received from guides wearing uniforms with the organization's unique logo. The proposed system is expected to provide convenience to passengers by improving mobility, safety, and usability over existing wheelchairs.

A Study on the Recognition of the Road Traffic Information Board using Hough Transform and Genetic Algorithm (하프변환과 유전자 알고리즘을 이용한 도로정보 표지판 인식에 관한 연구)

  • 정진용;정채영
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.2
    • /
    • pp.95-104
    • /
    • 1999
  • With the increasing of cars, general studies of them for the traffic safety have been raised as important problems. Visual system to radio-controled driving is to sample road traffic information as reconstructing a model from lots of road traffic information which is successively input in order to drive on unknown road. This paper proposes a sampling process of the road traffic information board needed in automatic driving under automatic drive system using Hough Transform and Genetic Alorithm.

  • PDF

A Development of Driving Simulator using Fuzzy Rules and Neural Network (퍼지규칙 및 신경망을 이용한 운전 시뮬레이터 개발)

  • Hong You-Sik;Kim Tae-Dal;Kim Man-Bae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.142-148
    • /
    • 2006
  • Considering the domestic traffic environment and the increase of traffic accidents, we have been asked to exactly analyze the main causes of accidents for the accident-experienced drivers to be rehabilitated. In this thesis we present the development process and results of a driving simulator using the IPDE method in the interest of safe driving and driving rehabilitation. Through this Driving simulation development the rehabilitated driver has the possibility of experiencing the real driving situation with the driving aptitude and examines the reasons of accidents. Through the examinations the driver has the chance to correct the deformities of driving by choosing the explanatory scenes, and through this process the driver is able to develop the capability to react in the real situation. However this driving simulation system is one of the best developed, depending on weather and road condition the braking distance may change. Therefore the fuzzy rule and neural network have been used in this thesis to solve previously mentioned problem. The simulation exactly calculated the road and weather conditions to adjust the breaking intensity.

Energy Efficient Electric Vehicle Driving Optimization Method Satisfying Driving Time Constraint (제한 주행시간을 만족하는 에너지 효율적인 전기자동차 주행 최적화 기법)

  • Baek, Donkyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.2
    • /
    • pp.39-47
    • /
    • 2020
  • This paper introduces a novel system-level framework that derives energy efficient electric vehicle (EV) driving speed profile to extend EV driving range without additional cost. This paper first implements an EV power train model considering forces acting on a driving vehicle and motor efficiency. Then, it derivate the minimum-energy driving speed profile for a given driving mission defined by the route. This framework first formulates an optimization problem and uses the dynamic programming algorithm with a weighting factor to derive a speed profile minimizing both of energy consumption and driving time. This paper introduces various weighting factor tracking methods to satisfy the driving time constraint. Simulation results show that runtime of the proposed scaling algorithm is 34% and 50% smaller than those of the binary search algorithm and greedy algorithm, respectively.

The Intelligent Blockchain for the Protection of Smart Automobile Hacking

  • Kim, Seong-Kyu;Jang, Eun-Sill
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • In this paper, we have recently created self-driving cars and self-parking systems in human-friendly cars that can provide high safety and high convenience functions by recognizing the internal and external situations of automobiles in real time by incorporating next-generation electronics, information communication, and function control technologies. And with the development of connected cars, the ITS (Intelligent Transportation Systems) market is expected to grow rapidly. Intelligent Transportation System (ITS) is an intelligent transportation system that incorporates technologies such as electronics, information, communication, and control into the transportation system, and aims to implement a next-generation transportation system suitable for the information society. By combining the technologies of connected cars and Internet of Things with software features and operating systems, future cars will serve as a service platform to connect the surrounding infrastructure on their own. This study creates a research methodology based on the Enhanced Security Model in Self-Driving Cars model. As for the types of attacks, Availability Attack, Man in the Middle Attack, Imperial Password Use, and Use Inclusive Access Control attack defense methodology are used. Along with the commercialization of 5G, various service models using advanced technologies such as autonomous vehicles, traffic information sharing systems using IoT, and AI-based mobility services are also appearing, and the growth of smart transportation is accelerating. Therefore, research was conducted to defend against hacking based on vulnerabilities of smart cars based on artificial intelligence blockchain.

A Study on the Time Delay Characteristics of Traffic Signal Phase and Timing Information Providing System (신호현시 정보 제공 시스템의 시간 지연특성 연구)

  • Bae, Jeong Kyu;Seo, Kyung Duk;Seo, Woo Chang;Seo, Dae Wha
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.48-59
    • /
    • 2022
  • A V2X system can be a candidate as a means to increase the stability of autonomous vehicles. In particular, in order to implement a Level 4 or higher autonomous driving system, the application of the V2X system is essential. Wireless communication technologies applicable to the V2X system include WAVE and C-V2X. Currently, the V2X service most used by autonomous driving systems is a service that provides signal phase and timing information and since real-time characteristic is a very important, verification of this service must be done. In this paper, we measured the time delay characteristics for providing signal phase and timing information using WAVE and LTE communication, and proposed a TOD-based signal phase and timing information generation method without using V2X communication system. To analyze the time delay characteristics, RTT (Round Trip Time) was measured as a result of the measurement. Average RTT using WAVE communication was 5.84ms and was 104.15ms with LTE communication. As a result of measuring the error between the signal phase and timing information generated based on TOD and the actual traffic light state, it was measured to be -0.284~3.784sec.

Implementation of Drowsy Prevention System Using Arduino and YOLO (아두이노와 YOLO를 이용한 졸음 방지 시스템 구현)

  • Lee, Hyun-Ae;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.917-922
    • /
    • 2021
  • In modern society, deaths and property damage due to drowsiness occur every year enormously. Methods to reduce such damage are being studied a lot in all walks of life, and research on preventing drowsy driving is particularly active in automobiles. In this paper, as an Arduino-based water gun firing system that learns open and closed eyes using YOLO, we propose a drowsy prevention system that fires a water gun when the duration of the closed eye exceeds a certain time. This system can be applied and used in various fields, but especially when applied to a car, it is not necessary to purchase expensive specifications and if you pay a little attention, you can reduce accidents caused by drowsy driving by 100% at a very low cost. In addition, it can be said that it is an independent system that overcomes different specifications for each company.

Evaluation of Effectiveness on Delineation System Using Virtual Driving Simulator (가상주행 시뮬레이터를 활용한 시선유도시설 효과평가 연구)

  • Park, Jejin;Kim, Ducknyung;Park, Yongjin;Song, Wonchul
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.163-171
    • /
    • 2017
  • PURPOSES : Traffic safety facilities are used to prevent traffic accidents before they occur by providing drivers with information on traffic situations and the geometric design of roads. However, some facilities not defined in guidelines do not meet installation criteria, yet are being installed and used in order to increase efficiency in traffic flow and prevent traffic accidents in a specific expressway zone. In this study, we have evaluated the effect of delineation system which are not defined in the guideline criteria. METHODS : Different virtual scenarios were created for roads using expressway median barrier chevron signs, with a driving simulator used to evaluate the installation and operational effect of such signs. Ten experiments were performed with left- and right-curved roads at curve radius intervals of 500 m, from 500 m to 2,500 m. RESULTS : For sections with a curve radius of more than 1,500 m, drivers had a clear tendency toward stable driving regardless of delineation system. When a chevron sign is installed on a protection fence in the road curving left, an expanded installation is recommended up to the section with a curve radius of 1,000 m. According to the analysis results for the RHB (Relative High Beta spectrum), driving concentration also improved up to a curve radius of 1,000 m. CONCLUSIONS :The experiment result indicates the extent of biasing within a lane and the manipulation amount of steering handle, were analyzed and found to be affected by curve radius and road alignment regardless of delineation system.

A Study on the Torque Distribution for Improving the Turning Performance of a Vehicle with Torque Vectoring System (토크 벡터링 시스템이 적용된 차량의 선회 성능 향상을 위한 토크 분배에 관한 연구)

  • SeHyeoun Kim;TaeKue Kim;SoongKeun Lee;DongGun Choi;InGyu Choi;Gunpyoung Kwak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.4
    • /
    • pp.35-43
    • /
    • 2023
  • In next-generation electric vehicles, research is being conducted on an in-wheel motor system that directly controls torque by each wheel to improve total cost and driving performance. Accordingly, in this paper, a study was conducted on an algorithm that distributes the torque applied to each wheel in a torque vectoring system applied to an in-wheel motor for driving an electric vehicle. In order to implement a vehicle model that applies actual vehicle characteristic parameters according to vehicle driving and steering, a simulation was conducted in the MATLAB Simulink environment, and it was confirmed that torque distribution was performed according to the proposed algorithm.

Simultaneous and Coded Driving System of Ultrasonic Sensor Array for Object Recognition in Autonomous Mobile Robots

  • Kim, Ch-S.;Choi, B.J.;Park, S.H.;Lee, Y.J.;Lee, S.R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2519-2523
    • /
    • 2003
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments, because they are cheap, easy to use, and robust under varying lighting conditions. In most cases, a single ultrasonic sensor is used to measure the distance to an object based on time-of-flight (TOF) information, whereas multiple sensors are used to recognize the shape of an object, such as a corner, plane, or edge. However, the conventional sequential driving technique involves a long measurement time. This problem can be resolved by pulse coding ultrasonic signals, which allows multi-sensors to be fired simultaneously and adjacent objects to be distinguished. Accordingly, the current presents a new simultaneous coded driving system for an ultrasonic sensor array for object recognition in autonomous mobile robots. The proposed system is designed and implemented using a DSP and FPGA. A micro-controller board is made using a DSP, Polaroid 6500 ranging modules are modified for firing the coded signals, and a 5-channel coded signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances for each sensor were obtained from the received overlapping signals using correlations and conversion to a bipolar PCM-NRZ signal.

  • PDF