• Title/Summary/Keyword: Driving Force

Search Result 1,483, Processing Time 0.03 seconds

Air-Barrier Width Prediction of Interior Permanent Magnet Motor for Electric Vehicle Considering Fatigue Failure by Centrifugal Force

  • Kim, Sung-Jin;Jung, Sang-Yong;Kim, Yong-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.952-957
    • /
    • 2015
  • Recently, the interior permanent magnet (IPM) motors for electric vehicle (EV) traction motor are being extensively researched because of its high energy density and high efficiency. The traction motor for EV requires high power and high efficiency at the wide driving region. Therefore, it is essential to fully consider the characteristics of the motor from low speed to high-speed driving regions. Especially, when the motor is driven at high speed, a significant centrifugal force is applied to the rotor. Thus, the rotor must be stably structured and be fully endured at the critical speed. In this paper, aims to examine the characteristics of the IPM motor by adjusting the width of air-barrier according to the permanent magnet position which is critical in designing an IPM motor for EV traction motors and to conduct a centrifugal force analysis for grasping mechanical safety.

Evaluation on the Driving Characteristics of a Precise Actuator Using Piezoelectric Elements (압전소자를 이용한 정밀 액츄에이터의 구동특성 평가)

  • Kim, S.C.;Kim, S.H.;Kwak, Y.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.45-52
    • /
    • 1995
  • A prototype of a linear piezoelectric actuator is developed and its dynamic behaviors are investigated. The actuator consists of a driving tip with two stacked piezoelectric elements and a slider. Dynamic characteristics of slider over various vibration lici of the driving tip and changes of normal force acting on the vibratory tip are examined through experiments. The moving direction of slider can be controlled by changing a phase angle between input signals applied to piezoelectric elements. A change of phase difference between input signals also have a great influence on the vibration locus of driving tip. Changes of slider motion due to different vibration loci are examined by experiments.

  • PDF

Development of Electric Motion Wheel Chair Driving System using Planetary Gear Device

  • Ham, Seong-Hun;Youm, Kwang-Wook
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.199-206
    • /
    • 2020
  • A wheelchair is an essential rehabilitation assistant device for the movement of paraplegia patients and generally paralyzed patients who cannot walk normally. In particular, the applicability of the manual/motorized wheelchair is gradually increasing. Until now, decelerators using belt, chain and worm gears, etc have been widely used. However, a decelerator takes a large space although it is a simple device and thus is not ideal for the driving part of manual/motorized wheelchair. For these reasons, in this study we developed a driving part producing a large driving force through a decelerator using planetary gears rather than conventional worm gear-based decelerator. We designed the tooth profile of the planetary gears for decelerator using Kisssoft program, In addition, we designed the driving part so as to apply it to the wheels of conventional wheelchairs, and then optimized the mechanism for the principles of manual/motorized transposition of the driving part and the operational principles. Based on the results of this study, we finally designed and manufactured a driving part for wheelchair decelerator in the form of planetary gears with 1 sun gear, 2 planetary gears and 1 ring gear.

Design of VCM(Voice Coil Motor) for Nanoindenter (나노인덴터용 보이스코일 모터 설계)

  • Cho, J.H.;Kwon, B.I.;Woo, K.I.;Jun, H.D.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.577-579
    • /
    • 2002
  • Propose of this paper is VCM (voice coil motor) design for application of Nanoindenter, which enable control of extremely small force and displacement. This paper present the VCM shape to produce a very small force by the difference of flux density of lower part from higher one. In wide range of current. VCM produces linear driving force and operate on regular thrust having maximum displacement(100um) was practiced.

  • PDF

A Development of Measurement System for Diathesis-Diagnosis (체질 진단용 센서 시스템의 구현)

  • 정용래;김승우
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.117-120
    • /
    • 2002
  • This paper is to develop the sensing system for opening-force measurement such as O-Ring muscular meridian. We designed to overcome the functional limit that the conventional force-sensor can measure just the closing-force. Therefore, the new sensor can meet a variety of application as well as O-Ring test. The structure of the new sensor is an actuator-type system using an electromagnet. That is made up of mechanical system, electromagnet, current transformer and computer interface circuit. Driving software and user interface program of the new sensor system also is explained in this paper.

  • PDF

Design and Analysis of Electromagnetic Tubular Linear Actuator for Higher Performance of Active Accelerate Pedal

  • Lee, Jae-Yong;Kim, Jin-Ho;Lee, Jeh-Won
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.175-180
    • /
    • 2009
  • This paper describes the design and analysis of a tubular linear actuator for intelligent AAP (Active Accelerate Pedal) system. In a driving emergency, the electromagnetic actuator produces an additional pedal force such as the active pedal force and vibration force to release the driver's foot on accelerator pedal. A prior study found that the linear actuator with a ferromagnetic core had a problem in transferring the additional force naturally to a driver due to the cogging force. To reduce the cogging force and obtain higher performance of the AAP system, a coreless tubular linear actuator is suggested. Electromagnetic finite element analysis is executed to analyze and design the coreless tubular actuator, and dynamic analysis is performed to characterize the dynamic performance of the AAP system with the suggested tubular actuator for two types of thrust force.

Robust Internal-loop Compensation of Pump Velocity Controller for Precise Force Control of an Electro-hydrostatic Actuator (EHA의 정밀 힘제어를 위한 펌프 속도 제어기의 강인 내부루프 보상)

  • Kim, Jong-Hyeok;Hong, Yeh-Sun
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.55-60
    • /
    • 2018
  • Force-controlled electro-hydrostatic actuators have to exhibit high backdrivability, to quickly compensate for force control errors caused by externally disturbed rod movement. To obtain high backdrivability, the servomotor for driving the hydraulic pump, should rotate exactly to such a revolution to compensate for force control errors, compressing or decompressing cylinder chambers. In this study, we proposed a modified velocity control structure, including a robust internal-loop compensator (RIC)-based velocity controller, for the servomotor to improve backdrivability of a force-controlled EHA. Performance improvement was confirmed experimentally, wherein sinusoidal velocity disturbance was applied to the force-controlled EHA, with constant reference input. Its dynamic force control errors reduced effectively, with the proposed control scheme, compared to test results with a conventional motordriver, for motor velocity control.

Development of Driving Control Algorithm for Vehicle Maneuverability Performance and Lateral Stability of 4WD Electric Vehicle (4WD 전기 차량의 선회 성능 및 횡방향 안정성 향상을 위한 주행 제어 알고리즘 개발)

  • Seo, Jongsang;Yi, Kyongsu;Kang, Juyong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.62-68
    • /
    • 2013
  • This paper describes development of 4 Wheel Drive (4WD) Electric Vehicle (EV) based driving control algorithm for severe driving situation such as icy road or disturbance. The proposed control algorithm consists three parts : a supervisory controller, an upper-level controller and optimal torque vectoring controller. The supervisory controller determines desired dynamics with cornering stiffness estimator using recursive least square. The upper-level controller determines longitudinal force and yaw moment using sliding mode control. The yaw moment, particularly, is calculated by integration of a side-slip angle and yaw rate for the performance and robustness benefits. The optimal torque vectoring controller determines the optimal torques each wheel using control allocation method. The numerical simulation studies have been conducted to evaluated the proposed driving control algorithm. It has been shown from simulation studies that vehicle maneuverability and lateral stability performance can be significantly improved by the proposed driving controller in severe driving situations.

A Study on the Dominant Driving Force of Plate Movement presented in the High School Earth Science Textbooks (고등학교 지구과학 교과서에 제시된 판 이동의 주된 원동력에 대한 고찰)

  • Jeon, Taehwan;Seo, Ki-Weon;Lee, Gyuho
    • Journal of the Korean earth science society
    • /
    • v.37 no.1
    • /
    • pp.62-77
    • /
    • 2016
  • In the early model of plate tectonics, the plate was depicted as a passive raft floating on the convecting mantle and carried away by the mantle flow. At the same time, ridge push at spreading boundaries and drag force exerted by the mantle on the base of lithosphere were described as the dominant driving forces of plate movements. However, in recent studies of plate tectonics, it is generally accepted that the primary force driving plate motion is slab pull beneath subduction zones rather than other forces driven by mantle convection. The current view asserts that the density contrast between dense oceanic lithosphere and underlying asthenosphere is the substance of slab pull. The greater density of oceanic slab allows it to sink deeper into mantle at trenches by gravitational pull, which provides a dominant driving force for plate motion. Based on this plate tectonics development, this study investigated the contents of plate tectonics in high school Earth Science textbooks and how they have been depicted for the last few decades. Results showed that the early explanation of plate movement driven by mantle convection has been consistently highlighted in almost all high school textbooks since the 5th curriculum, whereas most introductory college textbooks rectified the early theory of plate movement and introduced a newly accepted theory in revised edition. Therefore, we suggest that the latest theory of plate tectonics be included in high school textbooks so that students get updated with recent understanding of it in a timely manner.

Fault-Tolerant Driving Control of Independent Steer-by-Wire System for 6WD/6WS Vehicles Using High Slip (고슬립을 이용한 6 륜구동/6 륜조향 차량 고장 안전 주행 제어)

  • Nah, Jae Won;Kim, Won Gun;Yi, Kyongsu;Lee, Jongseok;Lee, Daeok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.731-738
    • /
    • 2013
  • This paper describes a fault-tolerant driving control strategy for an independent steer-by-wire system in sixwheel-drive/six-wheel-steering vehicles. An algorithm has been designed to realize vehicle maneuverability that is as close as possible to that of non-faulty vehicles by inducing high slip ratio of the wheel through a faulty steer-by-wire system in order to reduce the lateral tire force, which is resistant to the yaw motion. Considering the transition of the longitudinal tire force of a wheel with a faulty steer-by-wire component, the longitudinal tire forces are optimally distributed to the other wheels. Fault-tolerant driving performance has been investigated via computer simulations. Simulation studies show that the proposed algorithm can significantly improve the maneuverability of a vehicle with a faulty steer-by-wire system as compared to the optimal traction distribution method.