• 제목/요약/키워드: Driving Force

검색결과 1,480건 처리시간 0.029초

지반 물성값에 따른 항타 진동이 지중 삼중관에 미치는 거동 분석 (Effect of Pile Driving on Three Layered Pipeline according to Soil Properties Variation)

  • 유한규;최정현;원종화;김문겸
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.765-770
    • /
    • 2010
  • In this study, the behavior of underground pipeline subjected to pile driving is examined using the verified finite element model based on the field experiment. Young's modules of surface soil is varied and elastic modulus of the other soil layer is fixed. The pile driving force model proposed by Mounir E. Mabsout in 1999 was used and it was functions of time and of force. The forcing function applied on this study considers the kinetic energy of ram located at 1.2m height with 7 tonf. The 3-layered pipeline is composed of steel(inner) pipe, PUR(Polyurethane Resin, filler) and HDPE(outer) pipe, and the length/diameter of main steel pipe is 20m/0.8m(O.D). It is used for district heating pipes in Korea. The results are expressed in terms of Von Mises stress, displacement, and vibration velocity for each soil condition. From the results of the analyses, PUR which is originally intended as a thermal insulation of inner pipe shows performance as a structural member which distributes external pressure.

  • PDF

대형트럭용 루프 훼어링과 디프렉트의 공기저항력 저감 특성에 관한 연구 (An Effect of Roof-Fairing and Deflector System on the Reduction of Aerodynamic Drag of a Heavy-Duty Truck)

  • 김철호
    • 한국자동차공학회논문집
    • /
    • 제14권2호
    • /
    • pp.194-201
    • /
    • 2006
  • Roof-fairing and deflector system have been used on heavy-duty trucks to minimize aerodynamic drag force not only for driving stability of the truck but also for energy saving by reducing the required driving power of the vehicle. In this study, a numerical simulation was carried out to see aerodynamic effect of the drag reducing device on the model vehicle. Drag and lift force generated on the five different models of the drag reducing system were calculated and compared them each other to see which type of device is efficient on the reduction of driving power of the vehicles quantitatively. An experiment has been done to see airflow characteristics on the model vehicles. Airflow patterns around the model vehicles were visualized by smoke generation method to compare the complexity of airflow around drag reducing device. From the results, the deflector systems(Model 5,6) were revealed as a better device for reduction of aerodynamic drag than the roof-fairing systems(Model 2,3,4) on the heavy-duty truck and it can be expected that over 10% of brake power of an engine can be saved on a tractor-trailer by the aerodynamic drag reducing device at normal speed range($80km/h{\sim}$).

승용차용 Wheel Bearing Hub Unit 설계를 위한 주행 하중조건의 실험적 연구 (Experimental Study of Driving Load Conditions for the Wheel Bearing Hub Unit of Passenger Car)

  • 김기훈;유영면;임종순
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.166-173
    • /
    • 2002
  • The wheel bearing hub unit is developed type of wheel bearing unified with the hub parts. It has advantage of reducing the weight and the number of components. And, it also improves uniformity of manufacturing quality, In order to design the wheel bearing hub units, many techniques are used such as load analysis, structure analysis and bearing characteristics analysis and so forth. These techniques need highly accurate load conditions founded on service conditions. In this study, to design the wheel bearing hub units used widespread in passenger cars, the service load was measured through driving tests on the public roads and in the special events. The public roads are classified into highway, intercity road, rural road, urban road, and unpaved road so as to know what the characteristics of the road loads are. The results of the tests showed that the wheel force was relative to the lateral acceleration, and also could be calculated from the lateral acceleration. The lateral acceleration was measured from 0.0G to 0.6G in general driving on the public roads, with different distributions in each road type. In special events, the maximum lateral acceleration was measured from 0.8G to 1.3G.

Virtual Hill 및 Sink 개념 기반의 군집 로봇의 직선 대형 주행 기법 (Cluster Robots Line formatted Navigation Based on Virtual Hill and Virtual Sink)

  • 강요환;이민철;김지언;윤성민;노치범
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.237-246
    • /
    • 2011
  • Robots have been used in many fields due to its performance improvement and variety of its functionality, to the extent which robots can replace human tasks. Individual feature and better performance of robots are expected and required to be created. As their performances and functions have increased, systems have gotten more complicated. Multi mobile robots can perform complex tasks with simple robot system and algorithm. But multi mobile robots face much more complex driving problem than singular driving. To solve the problem, in this study, driving algorithm based on the energy method is applied to the individual robot in a group. This makes a cluster be in a formation automatically and suggests a cluster the automatic driving method so that they stably arrive at the target. The energy method mentioned above is applying attractive force and repulsive force to a special target, other robots or obstacles. This creates the potential energy, and the robot is controlled to drive in the direction of decreasing energy, which basically satisfies lyapunov function. Through this method, a cluster robot is able to create a formation and stably arrives at its target.

선체 외부 검사용 모바일 로봇 개발에 관한 연구 (A Study on the Development of Mobile Robot for Inspection of Hull Surface)

  • 김진만;김헌희;남택근
    • 해양환경안전학회지
    • /
    • 제21권6호
    • /
    • pp.744-750
    • /
    • 2015
  • 본 연구에서는 해상에서 선박의 외측 표면 검사를 위한 모바일 로봇의 개발에 대해 언급하였다. 해상에서 선체 측면에 대한 검사를 육안으로 진행하기 어려우며 이러한 검사를 효과적으로 수행하기 위해 모바일 로봇은 선체 측면에 부착되어 주행할 수 있는 기능을 갖추어야 한다. 이를 위해 선체 측면과의 부착력을 발생시키기 위해 영구 자석 모듈을 도입하였고, 곡면 주행 시 자기력의 변화를 최소화하는 구조로 설계를 하였다. 이러한 설계를 바탕으로 4개의 네오디움 자석, 4개의 구동바퀴, 영상 획득 모듈로 구성되는 모바일 로봇을 제작하였다. 제작된 로봇에 대해 선체와의 부착력을 확인하기 위한 하중 실험을 실시하였고, 주행이후 정지 시 측면 미끄럼 실험과 주행 속도 측정 실험을 실시하였다. 실험 결과 13 [Kgf]까지 선체와의 부착력을 유지할 수 있었고, 미끄러짐이 없는 하중은 8 [Kgf]까지였다. 주행 실험에서는 6.5 [A]의 전류에 대해 0.82 [m/s]의 속도로 주행할 수 있는 것을 확인하였다. 선박의 표면 검사를 위해 개발한 모바일 로봇의 특성 실험을 통해 로봇의 유용성을 확인할 수 있었다.

행성탐사 로버 휠 테스트 베드 설계 및 주행 실험 (Design of a Wheel Test Bed for a Planetary Exploration Rover and Driving Experiment)

  • 김건중;김성환;유기호
    • 제어로봇시스템학회논문지
    • /
    • 제21권4호
    • /
    • pp.372-377
    • /
    • 2015
  • In this paper, the consideration factors that affect the actual driving of a rover wheel was examined based on the wheel-terrain model. For the evaluation of driving performance in a real environment, the test bed of the rover wheel consists of the driving part of the wheel and sensing part of the various parameters was designed and assembled. Using the test bed, the preliminary driving experiment concerning the slip ratio, sinkage, and friction force according to the rotational velocity and the shape of the wheel were carried out and evaluated. The wheel test bed and the experiment results are expected to contribute to finding the optimal result in the designing of the wheel shape and the planning of the driving conditions through further study.

슬라이딩모드 제어기를 이용한 공기압 실린더 구동장치의 강인제어 (Robust Control of Pneumatic Cylinder Driving System using Sliding Mode Controller)

  • 장지성;한승훈
    • 동력기계공학회지
    • /
    • 제21권6호
    • /
    • pp.101-109
    • /
    • 2017
  • The pneumatic driving system has advantages such as high output power per weight and low heat generation rate. However, it is difficult to control the position because of its strong non-linearity such as large friction forces compared to driving force, and heat transfer characteristics that change during operation. Therefore, in order to achieve the control objectives, a robust controller should be designed considering modeling error and model uncertainty. In this paper, a sliding mode controller is designed to improve the position control performance of pneumatic cylinder driving system. Experimental results show that the designed controller achieves the designed control objectives even if the model of the cylinder driving system, such as the initial pressure inside the cylinder and the initial position of the piston is changed.

펄스폭 변조를 이용한 정전형 액추에이터의 구동 및 위치 검출 알고리즘 (Driving and Position Sensing Algorithm for an Electrostatic Actuator Using Pulse-width Modulation)

  • 민동기;전종업
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.65-70
    • /
    • 2008
  • Capacitive position sensing with modulation technique is widely used in electrostatic actuator applications. To maximize the electrostatic force and the position-sensing gain, capacitors for driving and capacitors for sensing are shared, i.e, after applying the driving voltage with high-frequency modulating signals using op amps, the position is demodulated from the modulated signal. In high-voltage applications, however, low bandwidth of a high-voltage op amp hinders adding the high-frequency modulating signal to the driving voltage. In this paper, new and very simple driving and sensing method is proposed, in which the pulse-width modulated driving voltage eliminates the need of the high-frequency modulating signal for position sensing. This new algorithm is proved by the simulation results using Matlab/SIMULINK.

초음파모터를 이용한 역감장치에 관한 연구 (A Study on Force-Reflecting Interface using Ultrasonic Motros)

  • 강원찬;김대현;김영동
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.123-128
    • /
    • 1998
  • This paper describes the evaluation of a force-reflecting interface with ultrasonic motors(USMs). The force-reflecting interface allows a human to feel object within virtual environment. To effectively display the mechanical impedance of the human hand we need a haptic device with specific characteristics, such as low inertia, almost zero friction and very high stiffness. USMs have attracted considerable attention as the actuator satisfied these conditions. USMs combine features such as high driving torque at low rotational speed, high holding torque and fast response therefore we studied two degree of freedom force-reflecting haptic system.

  • PDF

연약갯벌 차량용 주행장치 개발에 관한 연구 (Study on Driving System for Tidal Flat Vehicle)

  • 여태경;홍섭;김형우;최종수
    • 한국해양공학회지
    • /
    • 제24권3호
    • /
    • pp.72-78
    • /
    • 2010
  • This paper presents a design approach of driving system for tidal flat vehicle. Firstly, topographic and geological survey of tidal flat zone was accomplished. 'Anac' located in the west-south coast of South Korea was chosen for the survey area. From the survey, the basic design data such as distribution of gullies size and bearing pressure was obtained. To figure out the shape of driving system, numerical simulations were carried out. Through the numerical dynamic simulations using $Recurdyn^{TM}$, the performance of various concepts of driving system was analyzed. From the results, we propose the conceptual design with the functions: a) low contact pressure, b) powerful driving force transmission, c) adaptation to the ground undulation. To satisfy these functional requirements, the driving system adopts rubber tracks, sprockets, tires and suspensions. The static structural analysis of the frame structure was executed as well, from which the detailed design was drawn out. To validate the performance of the designed driving system, the test vehicle which has gasoline engine of 27HP and mechanical transmission was constructed. The driving tests of the vehicle were performed twice at the "Anac" area, and unveiled its capability.