• Title/Summary/Keyword: Driving Analysis

Search Result 3,169, Processing Time 0.032 seconds

A Study for Development of Integrated DC Railway System Analysis Algorithm (도시철도 급완행 통합해석 알고리즘 개발에 관한 연구)

  • Jang, Dong Uk;Kim, Moo Sun;Hong, Jae Sung;Lee, Hansang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.646-652
    • /
    • 2015
  • Increasing needs for rapid driving vehicles during rush hour, there are various researches how to operate or allocate rapid driving vehicles with the existing normal driving vehicles. In the aspect of power system, it should be preceded by an analysis for power equipment capacity. Also, it should be studied whether the added rapid driving vehicles gives a bad effects for stable operation of railway systems or not. In order to derive the results for these analysis processes, this paper suggest a novel analysis algorithm which can implement integrated analysis including rapid and normal driving railway vehicles simultaneously. This algorithm has been verified using Seoul Metro 7 Line data.

Commercial and In-house Simulator Development Trend for Electromagnetic Analysis of Autonomous Driving Environments (자율주행 환경의 전자기 해석을 위한 상용 및 자체 시뮬레이터 개발 동향)

  • Park, Woobin;Kim, Moonseong;Lee, Woochan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.4
    • /
    • pp.31-42
    • /
    • 2021
  • In the modern era, radio wave analysis is necessary for various fields of engineering, and interpretation of this is also indispensable. Self-driving cars need multiple different electronic components, and thus accurate and fast electromagnetic simulator for this kind of complex radio environment is required for self-driving simulations. Accordingly, the demand for self-driving simulators as well as existing electromagnetic analysis software has increased. This paper briefly describes the characteristics of numerical analysis techniques for electromagnetic analysis, self-driving simulation software, and conventional electromagnetic simulation software and also summarizes the characteristics of each software. Finally, the verification of the result from in-house code compared to HFSS is demonstrated.

An application of wave equation analysis program to pile dynamic formulae

  • Tokhi, H.;Ren, G.;Li, J.
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.345-360
    • /
    • 2015
  • Wave equation analysis programs (WEAP) such as GRLWEAP and TNOWave were primarily developed for pre-driving analysis. They can also be used for post-driving measurement applications with some refinements. In the case of pre-driving analysis, the programs are used for the purpose of selecting the right equipment for a given ground condition and controlling stresses during pile driving processes. Recently, the program is increasingly used for the post-driving measurement application, where an assessment based on a variety of input parameters such as hammer, driving system and dynamic behaviour of soil is carried out. The process of this type of analysis is quite simple and it is performed by matching accurately known parameters, such as from CAPWAP analysis, to the parameters used in GRLWEAP analysis. The parameters that are refined in the typical analysis are pile stresses, hammer energy, capacity, damping and quakes. Matching of these known quantities by adjusting hammer, cushion and soil parameters in the wave equation program results in blow counts or sets and stresses for other hammer energies and capacities and cushion configuration. The result of this analysis is output on a Bearing Graph that establishes a relationship between ultimate capacity and net set per blow. A further application of this refinement method can be applied to the assessment of dynamic formulae, which are extensively used in pile capacity calculation during pile driving process. In this paper, WEAP analysis is carried out to establish the relationship between the ultimate capacities and sets using the various parameters and using this relationship to recalibrate the dynamic formula. The results of this analysis presented show that some of the shortcoming of the dynamic formula can be overcome and the results can be improved by the introduction of a correction factor.

Development of an Analysis System for Biosignal and Driving Performance Measurements (운전 생체신호 및 운전 수행도 분석 System 개발)

  • Lee, Won-Sup;Park, Jang-Woon;Kim, Su-Jin;Yoon, Sung-Hye;Yang, Xiaopeng;Lee, Yong-Tae;Son, Joon-Woo;Kim, Man-Ho;You, Hee-Cheon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.47-53
    • /
    • 2010
  • An analysis of biosignal and performance data collected during driving has increasingly employed in research to explore a human-vehicle interface design for better safety and comfort. The present study developed a protocol and a system to effectively analyze biosignal and driving performance measurements in various driving conditions. Electrocardiogram (ECG), respiration rate (RR), and skin conductance level (SCL) were selected for biosignal analysis in the study. A data processing and analysis protocol was established based on a comprehensive review of related literature. Then, the established analysis protocol was implemented to a computerized system so that immense data of biosignal and driving performance can be analyzed with ease, efficiency, and effectiveness for an individual and/or a group of individuals of interest. The developed analysis system would be of use to examine the effects of driving conditions to cognitive workload and driving performance.

A Driving Simulator of Construction Vehicles

  • Kwon Son;Goo, Sang-Hwa;Park, Kyung-Hyun;Yool, Wan-Suk;Lee, Min-Cheol;Lee, Jang-Myung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.12-22
    • /
    • 2001
  • Vehicle driving simulators hale been used in the development and modification of models. A simulator can reduce cost and time through a variety of driving simulations in the laboratory. Recently, driving simulators have begun to proliferate in the automotive industry and the associated research community. This paper presents the hardware and software developed fur a driving simulator of construction vehicles. This effect involves the real-time dynamic analysis of wheel-type excavator, the design and manufacturing of the Stewart platform, an integrated control system of the platform, and three-dimensional graphic modeling of the driving environments.

  • PDF

A Driving Simulator of Construction Vehicles (건설 중장비용 주행 시뮬레이터의 구현)

  • Son, Kwon;Goo, Sang-Hwa;Yoo, Wan-Suk;Lee, Min-Cheol;Lee, Jang-Myung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.66-76
    • /
    • 1999
  • Vehicle driving simulators have been used in the development and modification of models. A simulator can reduce cost and time through a variety of driving simulations in the laboratory. Recently, driving simulators have begun to proliferate in the automotive industry and the associated research community. This paper presents the hardware and software developed for a driving simulator of construction vehicles. This effor involves the real-time dynamic analysis of wheel-type excavator, the design and manufacturing of the Stewart platform, an integrated control system of the platform, and three-dimensional graphic modeling of the driving environments.

  • PDF

High-speed Trains Driving Functions Analysis Using Systems Engineering

  • Noh, Hee-Min
    • International Journal of Railway
    • /
    • v.3 no.3
    • /
    • pp.90-94
    • /
    • 2010
  • In this paper, driving functions of the Korea High-speed Trains were decomposed based on systems engineering architecture. In order to analyze the driving function, various systems engineering tools and methods were used. Moreover, interfaces of decomposed driving functions were analyzed to figure out purposes of the driving functions. Through activity modeling of driving function of the Korea High-Speed Trains, main functions were derived when starting, speeding and stopping. When the high speed train is speeding, pre-departure checks and wheel slide prevention are essential driving activities for the safety and when the high speed train runs high speed, maintaining driving stability by monitoring bogie hunting and monitoring drivers' safe operation by vigilance systems is important. Furthermore, when the train is braking, the driver should checks brake and suspensions as safety actions.

  • PDF

A Basic Study on Road Safety Assessment through an Analysis of Drivers' Driving Characteristics (운전자 주행특성 분석을 통한 도로 안전성 평가에 관한 기초연구)

  • Lim, Joon-Bum;Lee, Soo-Beom;Park, Jun-Tae;Park, Jin-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.136-140
    • /
    • 2011
  • In this study, to investigate the dangerous driving on the curves, a driving test was performed in 10 km from Jinan and to Jeonju(Bugui Gas Station~Whasim Intersection), on the national highway No. 26. For the dangerous driving felt by the driver when a driver is driving on the curves, lateral acceleration and yaw rate were analyzed. And then, the reference value of lateral acceleration and yaw rate was computed. Through observing the driving speed and the characteristics of ordinary drivers using the applicable roads or following them as they drive, the driving test was performed again and the section exceeding the reference value set as above was computed. On the dangerous driving area, exceeding the reference value, total 10 accidents took place from 2006 till 2010, and slipping caused by speeding accounted for more than 70% of the accidents. It was concluded that the result of an analysis through recording drivers' driving characteristics, was reliable.

Analysis and performance evaluation of the parallel typed for a vehicle driving simulator (병렬구조형 차량운전 모사장치의 성능평가 및 분석)

  • 박일경;박경균;김정하;이운성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1481-1484
    • /
    • 1997
  • The vehicle driving simulator expects vehicle motion with real-time simulation arise from driver's steering, accelerating, stopping and simulates motion of vehicl with visula, audio and washout algorithm. And it gives a vivid feeling to driver in reality. Vehicle driving simulator with vehicle integration control system is used for analysis of analysis of vehicle controllaility, steering capacity and safety in various pseudo environment alike. basides, it analyzeds vehicle safety factor dirver's reaction and promotes traffic safety without driver's own risks. The main proceduress of development of the vehicle driving simulator are classified by 3 parts. first the motion base system which can be generated by the motion queues, should be developed. Secondly, real-time vehicle software which can afford the vehicle dynamics, might be constructed. The third procedure is the integration of vehicle driing simulator which can be interconnected between visual systems with motion base. In this study, we are to study of the motion base for a vehicle driving simulator design and that of its real time control and using an extra gyro sensor and accelerometers to find a position and an orientatiion of the moving platform except for calculating forward kinematics. To drive the motion base, we use National Instruments corp's Labview software. Furthemore, we use analysis module for the vehicle motionand the washout algorithm module to consummate driving simulator, which can be driven by human in reality, so we are doing experimentally process about various vehicle motion conditon.

  • PDF

Study on Flow Lubrication Selection of Driving Gear Unit for EMU (전동차용 DRIVING GEAR UNIT의 윤활유량 선정에 관한 연구)

  • Kim, Kyung-Han;Lee, Tae-Hun;Kim, Hak-Soo;Seo, Young-Jin;Ko, Hyung-Keun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.132-137
    • /
    • 2011
  • Many studies are being conducted to improve high speed, light weight and safety of passenger. To improve safety of rolling stock, safety of running performance is most important, and optimizing flow lubrication in driving gear is essential. This study simulates lubricant flow change in driving gear casing which is splashed by the surface of low speed gear teeth following rotational direction of driving gear unit for EMU by using CFD analysis, and based on analysis detail, non-load actual test is conducted for similar driving condition to find out suitability of analysis, selection of lubricate and stability of driving gear.

  • PDF