• Title/Summary/Keyword: Drive train NVH

Search Result 2, Processing Time 0.016 seconds

THE CLONK PHENOMENON -A LOAD CHANGE REACT10N TO BE BALANCED H TERMS OF COMPORT AND ENGINE RESPONSE

  • Biermann, J.W.;Reitz, A.;Schumacher,T.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.56-60
    • /
    • 2000
  • The customers demand of a good vehicle agility consists of a quick reaction of the vehicle with the actuation of the throttle pedal on one hand and a high comfort level of vibration and noise within the vehicle on the other hand, which means the reduction of disturbing side effects. In order to achieve a satisfactory compromise it is necessary to gain a deeper understanding of the complex, high dynamic vibrations system "vehicle / drive train". For several years the ika has been carrying out such detailed vehicle investigations and test bench measurements in addition to comprehensive CAE analysis for various research projects in partnership with different vehicle manufacturers.

  • PDF

POSSIBILITIES TO IMPROVE TRANSIENT GEAR SHIFT NOISE (SHIFT CLONK) IN A PASSENGER CAR

  • BIERMANN J. W.;REITZ A.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.23-28
    • /
    • 2005
  • The presented investigation of shift clonk in a vehicle with front-wheel drive shows how a detailed analysis of the complete acoustic system with respect to excitation, transfer and radiation foremost enables possibilities of noise reduction to be worked out. One of the most important basics for the shift clonk analysis was a synchronous measurement of both, torsional vibrations in the drive train on the excitation side as well as airborne and structure-borne noise signals on the transfer and radiation side. Thus, root causes could be identified and improvement measures of the internal shift system could be worked out. An analysis of the transfer paths by means of airborne and structure borne noise measurements made evident that the side shafts were responsible for the disturbing frequencies in the transfer paths. With the help of the FE-simulation it was possible to develop measures of structure optimisation for the side shaft system. The realisation of these measures clearly reduced the shift-noises in the vehicle interior.