• Title/Summary/Keyword: Drive gear

Search Result 257, Processing Time 0.028 seconds

Theoretical Shape Analysis of Continuous Contact Helical Gear for Low Noise Pump (저소음 기어펌프용 연속접촉 헬리컬기어의 형상 설계에 관한 연구)

  • Kim, Kaptae;Shin, Soosik;Ji, Sang-Won
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.58-66
    • /
    • 2018
  • The use of external gear pumps is an effective way to achieve adequate performance at low cost when composing hydraulic systems. The biggest drawback, on the other hand, is the accompanying noise. Gears of continuous contact shape are actively used for the pump recently. The continuous contact shape must be the helical type due to the nature of the gear pump that is driven only by the drive gear. In this paper the theoretical shape of continuous contact gear is analyzed using simple rack shape of straight lines and two circular arcs. Using such geometry, the theoretical equation will be developed by envelope curves according to the conjugate gear shape rules. After checking the validity of the theory by the shape of gear rules, the grinding shape was also developed. The 3D shapes using equation can be also drawn. It was also shown that contact ratio and radius of curvature are easily developed by the theoretical equations.

Design and Analysis a Drive-train for a Parallel-type Hybrid Electric Vehicle (병렬형 하이브리드 자동차의 구동장치 설계 및 해석)

  • Kim, Dong-Hyun;Ahn, Sung-Jun;Choi, Jae-Weon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.770-777
    • /
    • 2012
  • This paper deals with the design and modal characteristics analysis of a drive-train for a paralleltype hybrid electric vehicle (HEV). The function of the drive-train system (DTS) in the HEV combines or divides the torque and velocity from the internal combustion engine along with the induction motor. The system consists of a compound planetary gear and unit's electromagnetic clutch to provide the operation modes such as Engine Only (EO), Electric Vehicle (EV), and Hybrid Electric Vehicle (HEV) modes. In order to investigate the characteristics of the velocity and torque flow for the system, dynamic models of the HEV with DTS are derived from the prototype DTS. The performance of the derived dynamic models is evaluated by both computer simulations and experiments according to each mode.

A Trend of Direct Drive Traction Motor for Next Generation Railway Vehicles (차세대 철도차량용 직접구동방식 T/M개발관련 기술개발 동향)

  • 권중록;김남해;김근웅;이정일;이종인
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.434-439
    • /
    • 2002
  • The researches on the direct drive system, which directly transfers axle load of the traction motor to wheels, have been developed as a next generation drive system in Japan and Europe. As a result of excluding couplings and gear units, the direct drive system has advantages on the bogie mount space to be smaller sized, lower noisy, more efficient and less weighted than the conventional drive system - indirect drive system. Since the simplification of the direct drive system design depends on the design of the traction motors, the researches on the direct drive system with focusing on the traction motors get started. The advantages/disadvantages of direct drive system, types, structures, cooling systems and interfaces of the traction motors are presented on this paper. Furthermore, the development of other countries on the electric equipments of the next generation railway vehicles are discussed and the necessity & requirement for developing new concepts of traction motors are assured.

  • PDF

Contact Stress of Slewing Ring Bearing with External Pinwheel Gear Set (핀 휠을 구비한 외륜형 선회베어링의 면압강도)

  • Kwon, Soon-man
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.231-237
    • /
    • 2015
  • The pin-gear drive is a special form of fixed-axle gear mechanism. A large wheel with cylindrical pin teeth is called a pinwheel. As pinwheels are rounded, they have a simple structure, easy processing, low cost, and easy overhaul compared with general gears. They are also suitable for low-speed, heavy-duty mechanical transmission and for occasions with more dust, poor lubrication, etc. This paper introduces a novel slewing ring bearing with an external pinwheel gear set (e-PGS). First, we consider the exact cam pinion profile of the e-PGS with the introduction of a profile shift. Then, the contact stresses are investigated to determine the characteristics of the surface fatigue by varying the shape design parameters. The results show that the contact stresses of the e-PGS can be lowered significantly by increasing the profile shift coefficient.

Vibration Characteristics of Worm Gear Faults for Elevators (승강기용 웜기어의 결함에 따른 진동 특성)

  • Lee, S.J.;Yang, B.S.;Lee, S.S.;Park, S.T.;Son, J.D.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.65-71
    • /
    • 2007
  • According to the survey, abnormal condition of the system is the main source for interrupting an elevator service, especially faults in worm gears used for the traction machine. Worm gear is popularly used in traction machine for middle and low speed elevators. Elevators need high reliability and stability, because they are closely related to human life. Usually, traction machine is applied to drive the elevators that have height about 35 m and it is an important mechanical unit for riding quality in elevators. There are some research results about types of vibration fault for worm gear in International Association Elevator Engineers (IAEE). But this study concerns with diagnosis of various faults in elevator worm gear using vibration signal. The analysis of fault characteristics is compared with previous researches in traction machine.

  • PDF

The driving system design of walking robot which uses the automotive window motor (자동차용 윈도우 모터를 이용한 보행로봇 구동부 설계)

  • YOUM, K.W.;HAM, S.H.;OH, S.H.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.137-141
    • /
    • 2011
  • Driving mechanism, the central part of a robot, was designed in this study. Power for the motive drive was acquired by directly connecting the motor shaft in worm shape of the low-end DC motor, car window motor, to a decelerator. The decelerator consists of a worm gear to receive power from the motor shaft, a pinion gear to be connected in line with the worm gear, and an output shaft to be engaged to the pinion gear. Motion driving is achieved by the power from the motor shaft with the designed gears, transferred to the deceleration mechanism and to the output gear.

Strength Analysis of Complex Gear Train for Transmission of 21-Ton Grade Wheel Excavator (21톤급 휠 굴착기용 트랜스미션의 기어 트레인에 대한 강도 해석)

  • Lee, JunHee;Bae, MyungHo;Cho, YonSang
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.179-184
    • /
    • 2022
  • The power train of transmission for 21-ton grade wheel excavator makes use of a complex gear train composed of a planetary and helical gear system to drive the wheel excavator by transmitting power to the axle. The complex gear train with a shift mode is an important part of the transmission because of strength problems in an extreme environment. To calculate the specifications of the complex gear train and analyze the gear bending and compressive stresses of the complex gear train, this study analyzes gear bending and compressive stresses accurately for the optimal design of the complex gear train with respect to cost and reliability. In this article, the gear bending and compressive stresses of the complex gear train are calculated using the Lewes and Hertz equation. Evaluating the results with the data of the allowable bending and compressive stress from the stress and number of cycles curves of the gears verified the calculated specifications of the complex gear train. A computer structure analysis is performed with the 3D model of the planetary and helical gears to analyze the structure strength of the complex gear train. The results demonstrate that the durability and strength of the complex gear train are safe, because the safety factors of the bending and compressive stresses are more than 1.0.

Estimation of Load on Ship's Hydraulic Steering Gear (선박 유압 조타장치 부하의 추정)

  • Ji, S.W.;Oh, J.M.;Jeong, E.S.;Kim, B.K.;Lee, I.Y.
    • Journal of Drive and Control
    • /
    • v.12 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • For testing a newly designed ship's steering gear, a steering gear test bench with a steering gear to be tested and a load generation part should be prepared. The load given to the steering gear has to be pertinent to the load generated in a targeted ship. In this study, the authors suggest a process of estimating the load given to steering gears in ships. At first, a test for measuring the load in the steering gear of a real ship was conducted. Then, a process was developed to compute rudder driving torque and force by using basic equations including some empirical equations on ship's steering. The test results and the computation results on the load in the steering gear were compared, As a result, the process suggested in this study for estimating load in ship's steering gears was verified.

Design Improvement of Mechanical Transmission for Tracked Small Agricultural Transporters through Gear Strength Analysis

  • Kim, Hong-Gon;Jo, Yeon-Ju;Kim, Chul-Soo;Han, Yong-Ho;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.41 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • Purpose: The gear strength of a new mechanical transmission designed to increase the loading weight of small 4.8 kW tracked agricultural transporters was analyzed. Design improvements to increase the gear strength and reduce the gear weight were proposed after examining the parameters. Methods: Sixteen operators from three regions were surveyed to obtain the usage profile of small 4.8 kW transporters. Gear strength was evaluated by calculating contact stress and tooth root stress using commercial software following ISO 6336. Results: From the strength calculation for each gear pair, contact stress smaller than tooth root stresses were produced in all gear pairs. The safety factors in most cases exceeded 1.0, except in the case of gear pair II in group II. The design life of the transporter using gear pair II in group II was 42% under harsh conditions-thus, this design life needs improvement. A robust design was proposed by examining the relevant parameters (face width and profile shift coefficient) to increase the design life of the transporter. In addition, a lightweight design for gear pair I in group II that was considered overdesigned was proposed by examining the face width to reduce the weight of the drive gear by 42% and that of the driven gear by 30%. Conclusions: The Safety factor for the design life was examined through a gear strength analysis. After examining the relevant parameters, conditions for strength improvement were proposed to increase design life or adjust overdesigned gear. However, load conditions differ depending on the working conditions or user's preferences; therefore, it is necessary to conduct further studies in various regions.

The Strength Analysis of Gears on Hydro-Mechanical Continuously Variable Transmission for Forklift (지게차용 기계유압식 무단변속기의 기어류에 대한 강도해석)

  • Bae, Myung Ho;Bae, Tae Yeol;Choi, Sung Kwang
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.45-51
    • /
    • 2016
  • The power train of a hydro-mechanical, continuously variable transmission for forklifts makes use of hydro-static units, hydraulic multi-wet disc brakes & clutches, and complex helical & planetary gears. The complex helical & planetary gears are very important parts of the transmission because of a strength problem. In the present study, we calculated the specifications of the complex helical & planetary gear train, and analyzed the gear bending and compressive stresses of the gears. It is necessary to analyze the gear bending and compressive stresses thoroughly for optimal design of the complex helical & planetary gears with respect to cost and reliability. In this paper, we analyze the actual gear bending and compressive stresses of complex helical & planetary gears using the Lewes & Hertz equation, and we also verify the calculated specifications of the complex helical & planetary gears by evaluating the results of the data of allowable bending and compressive stress using the Stress vrs Number of Cycles curves of gears.