• Title/Summary/Keyword: Drive Mechanism

Search Result 532, Processing Time 0.029 seconds

A study on vibration characteristics caused by backlash of gearbox in escalator with chain-sprocket drive mechanism (체인-스프라켓 메커니즘을 갖는 에스컬레이터에서 기어박스 백래시로 인한 이상진동에 관한 연구)

  • Kwon, Yi-Sug;Park, Seon-Ryong;Suh, Jong-Ho;Hong, Seong-Wook;Park, No-Gill
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.238-243
    • /
    • 2002
  • This paper presents an improved escalator dynamic model so as to reflect the experimental observation on the pseudo-resonance affected by load applied. The experimental evidence reveals that backlash of gearbox as well as sag of driving chain are most critical factors to the pseudo-resonance in escalators. The dynamic model effectively reflects vibration characteristics measured in real escalators with respect to different conditions of driving chain and the number of passengers. For validation of the dynamic model developed, numerical results from the model are compared with experimental results. The developed model and its simulation results are used rigorously for the design of escalator systems in enhancing the ride comfort.

  • PDF

Design Review of A Power Converter Topology for CEDM Driving (CEDM 구동용 전력변환회로 설계 검토)

  • Lee, J.M.;Kim, C.K.;Cheon, J.M.;Park, M.K.;Kwon, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1919-1920
    • /
    • 2006
  • This paper deals with the design review of a power converter topologies for CEDMCS (Control Element Drive Mechanism Control System). The CEDMCS provides the control signals and motive power to operate the CEDMS. The CEDM's raise and lower the CEAs (Control Element Assemblies) in the reactor core. The CEAs are constructed with the Boron-10 isotope which has a high microscopic cross section of absorption for thermal neutrons. This characteristic causes the addition of negative reactivity when a CEA is inserted and positive reactivity when it is withdrawn from the reactor core.

  • PDF

Design and Control of a Novel Tendon-driven Exoskeletal Power Assistive Device (새로운 와이어 구동방식 외골격 보조기의 설계 및 제어)

  • Kong Kyoung-chul;Jeon Doyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.936-942
    • /
    • 2005
  • Recently the exoskeletal power assistive equipment which is a kind of wearable robot has been widely developed to help the human body motion. For the elderly people and patients, however, some limits exist due to the weight and volume of the equipments. As a feasible solution, a tendon-driven exoskeletal power assistive device fur the lower body, and caster walker are proposed in this research. Since the caster walker carries the heavy items, the weight and volume of the wearable exoskeleton are minimized. The key control is used to generate the joint torque required to assist motions such as sitting, standing and walking. Experiments were performed for several motions and the EMG sensors were used to measure the magnitude of assistance. When the motion of sitting down and standing up was compared with and without wearing the proposed device, the $25\%$ assistance was acquired.

Modeling and Sliding-mode Control of a Robot Manipulator actuated by the Ball Screw (볼나사를 이용한 매니퓰레이터의 모델링 및 슬라이딩모드 제어)

  • 최형식;박용헌;정경식;이호식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.292-295
    • /
    • 2001
  • Conventional robots actuated by motors with the speed reducer such as harmonic drive had weakness in delivering loads, pressing, grinding, and cutting jobs. To overcome this, a new type of robot actuated by the ball screw was proposed. The ball screw is actuated by using four bar mechanism. The dynamics model of the robot was set up. The robot has parameter uncertainties and nonlinearlity due to the ball screw actuator. To coordinate the robot, the sliding-mode control was applied.

  • PDF

The first application of modified neutron source multiplication method in subcriticality monitoring based on Monte Carlo

  • Wang, Wencong;Liu, Caixue;Huang, Liyuan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.477-484
    • /
    • 2020
  • The control rod drive mechanism needs to be debugged after reactor fresh fuel loading. It is of great importance to monitor the subcriticality of this process accurately. A modified method was applied to the subcriticality monitoring process, in which only a single control rod cluster was fully withdrawn from the core. In order to correct the error in the results obtained by Neutron Source Multiplication Method, which is based on one point reactor model, Monte Carlo neutron transport code was employed to calculate the fission neutron distribution, the iterated fission probability and the neutron flux in the neutron detector. This article analyzed the effect of a coarse mesh and a fine mesh to tally fission neutron distributions, the iterated fission probability distributions and to calculate correction factors. The subcriticality before and after modification is compared with the subcriticality calculated by MCNP code. The modified results turn out to be closer to calculation. It's feasible to implement the modified NSM method in large local reactivity addition process using Monte Carlo code based on 3D model.

Drop Time Evaluation for SMART Control Rod Assembly (스마트 제어봉집합체의 낙하시간 평가)

  • Kim, Kyoung-Rean;Jang, Ki-Jong;Park, Jin-Seok;Lee, Won-Jae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.25-28
    • /
    • 2011
  • The control rod assemblies do freely fall into the reactor core by the gravity from the control rod drive mechanism. In order to achieve a rapid shutdown and control the reactor power, it is required to insert control rod assemblies as soon as possible. In this paper, we evaluated the drop time and flow characteristics caused around guide tube for SMART(System-integrated modular advanced reactor) control rod assembly. Numerical analyses are carried out with FLUENT program of computational fluid dynamics. This study results show that the drop time of the control rod assembly in the operating condition of SMART is more 20 percent rapidly than the drop time of the room temperature and ambient atmosphere condition.

Cost-effective Design of an Inverter Output Reactor in ASD application (전동기 과전압 억제용 OUTPUT REACTOR의 최적 설계)

  • 김한종;이근호;장철호;이제필
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.65-70
    • /
    • 1999
  • In this paper, the cost-effective design of output reactor which is used to suppress the over-voltage at the motor terminal in the Adjustable Speed Drives(ASD) application is proposed. In the elevator drive system, the power cable length is relatively shorter than other ASD applications and then the over-voltage at the motor terminal depends on the frequency characteristics of the output reactor at the over-voltage operating frequency. The over-voltage suppression mechanism of output reactor in ASD application is analyzed and the dominant parameters of output reactor for the over-voltage suppression are extracted. Using these parameters as the design values and considering the high frequency characteristics of iron core in the reactor, a new cost-effective structure of output reactor is proposed. Experimental results of the conventional reactor and the proposed reactor with a 15kW induction motor are given to verify the proposed scheme.

  • PDF

Development of KNGR-CEDMCS Prototype Using DCS for Nuclear Power Plant (원전용 분산제어시스템을 이용한 차세대 원전 제어봉 구동장치제어시스템 원형 개발)

  • Cheon, Jong-Min;Lee, Jong-Moo;Kim, Choon-Kyung;Park, Min-Kook;Kwon, Soon-Man;Shin, Jong-Ryeol
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2275-2277
    • /
    • 2004
  • Korea Next Generation Reactor(KNGR) is in the midst of being developed and will exceed Korea Standard Nuclear Power Plant(KSNP) economically. Domestic Instrumentation and Control(I&C) systems shall be applied to KNGR and the development of Control Element Drive Mechanism Control System(CEDMCS) considered as an essential part in nuclear I&C system will be dealt with in this paper. The newly developed CEDMCS has the control cabinet using the nuclear Distributed Control System(DCS) made in Korea and the power cabinet produced by our research institute and interfaced with the DCS control cabinet.

  • PDF

EMG-based Hybrid Assistive Leg for Walking Aid using Feedforward Controller

  • Kawamoto, Hiroaki;Sankai, Yoshiyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.32.2-32
    • /
    • 2001
  • We have developed the power assistive leg called HAL (Hybrid Assistive Leg) which provide the walking aid for walking disorder persons or aged persons without nursing person. We developed HAL-3 by considering some problems of HAL-1,2 which had developed previously. The mechanism of HAL-3 actuator could be simplified and sophisticated by using the harmonic drive. As the control signal of HAL-3 EMG signal was used. We proposed a calibration method to identify parameters which relates the EMG to joint torque by using HAL-3. We could obtain suitable torque estimated by EMG and realize power assist in walking according to the intention of the operator To the remove discomfort for quick motion power assist, the feedforward controller was installed at the beginning of motion ...

  • PDF

Improvement of the Thermal Characteristics of Synchronous Linear Motors through Structure Change (Synchronous Linear Motor의 구조변경에 의한 열특성에 개선)

  • 은인웅;이춘만;정원지;최영휴
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.367-370
    • /
    • 1997
  • Linear motors can drive a linear motion without intermediate gears, screws or crank shafts. Linear motors can successfully replace ball lead screw in machine tools because they have a high velocity, acceleration and good positioning accuracy. On the other hand, linear motors emit large amounts of heat and have low efficiency. In this paper, the thermal behavior of a synchronous linear motor with high velocity and force is analyzed. To improve the thermal characteristics of the linear motor, structure of linear motor and cooler is changed. Some effects of an integrated cooler, an U-cooler and a thermal symmetrical cooler are presented.

  • PDF