• Title/Summary/Keyword: Drivability

Search Result 71, Processing Time 0.023 seconds

A New Strained-Si Channel Power MOSFET for High Performance Applications

  • Cho, Young-Kyun;Roh, Tae-Moon;Kim, Jong-Dae
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.253-256
    • /
    • 2006
  • We propose a novel power metal oxide semiconductor field effect transistor (MOSFET) employing a strained-Si channel structure to improve the current drivability and on-resistance characteristic of the high-voltage MOSFET. A 20 nm thick strained-Si low field channel NMOSFET with a $0.75\;{\mu}m$ thick $Si_{0.8}Ge_{0.2}$ buffer layer improved the drive current by 20% with a 25% reduction in on-resistance compared with a conventional Si channel high-voltage NMOSFET, while suppressing the breakdown voltage and subthreshold slope characteristic degradation by 6% and 8%, respectively. Also, the strained-Si high-voltage NMOSFET improved the transconductance by 28% and 52% at the linear and saturation regimes.

  • PDF

Temperature-Adaptive Back-Bias Voltage Generator for an RCAT Pseudo SRAM

  • Son, Jong-Pil;Byun, Hyun-Geun;Jun, Young-Hyun;Kim, Ki-Nam;Kim, Soo-Won
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.406-413
    • /
    • 2010
  • In order to guarantee the proper operation of a recessed channel array transistor (RCAT) pseudo SRAM, the back-bias voltage must be changed in response to changes in temperature. Due to cell drivability and leakage current, the obtainable back-bias range also changes with temperature. This paper presents a pseudo SRAM for mobile applications with an adaptive back-bias voltage generator with a negative temperature dependency (NTD) using an NTD VBB detector. The proposed scheme is implemented using the Samsung 100 nm RCAT pseudo SRAM process technology. Experimental results show that the proposed VBB generator has a negative temperature dependency of -0.85 $mV/^{\circ}C$, and its static current consumption is found to be only 0.83 ${\mu}A$@2.0 V.

a-Si Process-based Advanced SPC TFT for AMOLED Application

  • Lee, Seok-Woo;Lee, Sang-Jin;Ahn, Tae-Joon;Park, Soo-Jeong;Kang, Su-Hyuk;Jung, Sang-Hoon;Lee, Hong-Koo;Kim, Sung-Ki;Park, Yong-In;Kim, Chang-Dong;Yang, Myoung-Su;Kang, In-Byeong;Hwang, Yong-Kee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.961-963
    • /
    • 2009
  • a-Si process-based advanced-SPC (a-SPC) TFT has been developed and verified by manufacturing an AMOLED panel having improved cost competitiveness by using the existing a-Si infrastructure. The a-SPC TFT had superior device reliability and current drivability to a-Si TFT to meet the requirements of AMOLED backplane.

  • PDF

DEVELOPMENT OF INNER-SPHERICAL CONTINUOUSLY VARIABLE TRANSMISSION FOR BICYCLES

  • Park, M.W.;Lee, H.W.;Park, N.G.;Sang, H.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.593-598
    • /
    • 2007
  • A new continuously variable transmission for bicycles(B-CVT) is developed by using a traction drive mechanism having inner and outer spherical rotors. The B-CVT has high power efficiency, large torque capacity, improved drivability and good packageability. The ratio change mechanism for the B-CVT is very simple, in contrast with other traction drive CVTs. After completing a conceptual design, a performance analysis and a detail design, a prototype of the B-CVT has been manufactured. The prototype has rated power of 100 watts, pedal speed of 6 rad/s and an overall speed ratio of 1.0-4.0. A bench test and an actual bicycle test have been performed to verify the practicability of the B-CVT.

FUZZY TORQUE CONTROL STRATEGY FOR PARALLEL HYBRID ELECTRIC VEHICLES

  • PU J.-H.;YIN C.-L.;ZHANG J.-W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.529-536
    • /
    • 2005
  • This paper presents a novel design of a fuzzy control strategy (FCS) based on torque distribution for parallel hybrid electric vehicles (HEVs). An empirical load-regulating vehicle operation strategy is developed on the basis of analysis of the components efficiency map data and the overall energy conversion efficiency. The aim of the strategy is to optimize the fuel economy and balance the battery state-of-charge (SOC), while satisfying the vehicle performance and drivability requirements. In order to accomplish this strategy, a fuzzy inference engine with a rule-base extracted from the empirical strategy is designed, which works as the kernel of a fuzzy torque distribution controller to determine the optimal distribution of the driver torque request between the engine and the motor. Simulation results reveal that compared with the conventional strategy which uses precise threshold parameters the proposed FCS improves fuel economy as well as maintains better battery SOC within its operation range.

EFFECT OF BASE OILS CHARACTERISTICS ON ATF PERFORMANCE

  • Moon, Woo-Sik;Yang, Si-Won
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.191-197
    • /
    • 2001
  • Performance requirements for automatic transmission fluids have been changing to reflect the design changes of automatic transmission. The major purpose for these design changes is to improve fuel economy and drivability. The use of special base oils like API Group III and IV base oils has increased in order to formulate high performance ATF. In this study. the effect of base oils characteristics on ATF performance is investigated, mainly regarding differences in frictional characteristics with deterioration. Moreover, low-temperature fluidity. oxidation stability. and seal compatibility are also compared for four different ATFs. From the investigation, it was found that the use of Group III and IV base oils in ATF has several benefits in low temperature viscosity. oxidation stability and SAE No.2 friction characteristics.

  • PDF

A Research for the pattern of the Instrument Panel Design of passenger cars (승용차 인스트루먼트 패널 디자인 유형의 연구)

  • Koo, Sang
    • Archives of design research
    • /
    • v.12 no.4
    • /
    • pp.99-108
    • /
    • 1999
  • The interior space in a passenger car is consisted with many partial elements, and the instrument panel is the most important part from all of them, which is designate the total image of the interior design and the space variation, drivability and safety of the interior space. ] The instrument panel of a passenger car in the early age had the concept of a wall between the engine room and the passenger cabin on which the instrument for the driver were fitted. Therefore the central mounting of the instruments was the typical feature regardless of the position of a driver seat. As the automobiles became more functional with many equipments, driver oriented instrument panel with energy absorbing materials had been developed, and that was the beginning of the various instrument panel design of these days. The recent instrument panels of passenger car have the tendency of going back to the central instrument mounting as it was at the past on a few cars for the strict safety regulation, a new production technology and for the enhanced drivability. It can be summarized into a few results as these with the analysis of a few recent instrument panels. -minimizing the total volume for the better frontal visibility. -energy absorbing and passive structures for the strict impact regulations. -revival of central instrument mounting for the convenience and safety through minimizing the difference of the focal length of a driver.

  • PDF

Characteristics of poly-Si TFTs using Excimer Laser Annealing Crystallization and high-k Gate Dielectrics (Excimer Laser Annealing 결정화 방법 및 고유전 게이트 절연막을 사용한 poly-Si TFT의 특성)

  • Lee, Woo-Hyun;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-4
    • /
    • 2008
  • The electrical characteristics of polycrystalline silicon (poly-Si) thin film transistor (TFT) crystallized by excimer laser annealing (ELA) method were evaluated, The polycrystalline silicon thin-film transistor (poly-Si TFT) has higher electric field-effect-mobility and larger drivability than the amorphous silicon TFT. However, to poly-Si TFT's using conventional processes, the temperature must be very high. For this reason, an amorphous silicon film on a buried oxide was crystallized by annealing with a KrF excimer laser (248 nm)to fabricate a poly-Si film at low temperature. Then, High permittivity $HfO_2$ of 20 nm as the gate-insulator was deposited by atomic layer deposition (ALD) to low temperature process. In addition, the solid phase crystallization (SPC) was compared to the ELA method as a crystallization technique of amorphous-silicon film. As a result, the crystallinity and surface roughness of poly-Si crystallized by ELA method was superior to the SPC method. Also, we obtained excellent device characteristics from the Poly-Si TFT fabricated by the ELA crystallization method.

Joint Position Control using ZMP-Based Gain Switching Algorithm for a Hydraulic Biped Humanoid Robot (유압식 이족 휴머노이드 로봇의 ZMP 기반 게인 스위칭 알고리즘을 이용한 관절 위치 제어)

  • Kim, Jung-Yup;Hodgins, Jessica K.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1029-1038
    • /
    • 2009
  • This paper proposes a gain switching algorithm for joint position control of a hydraulic humanoid robot. Accurate position control of the lower body is one of the basic requirements for robust balance and walking control. Joint position control is more difficult for hydraulic robots than it is for electric robots because of an absence of reduction gear and better back-drivability of hydraulic joints. Backdrivability causes external forces and torques to have a large effect on the position of the joints. External ground reaction forces therefore prevent a simple proportional-derivative (PD) controller from realizing accurate and fast joint position control. We propose a state feedback controller for joint position control of the lower body, define three modes of state feedback gains, and switch the gains according to the Zero Moment Point (ZMP) and linear interpolation. Dynamic equations of hydraulic actuators were experimentally derived and applied to a robot simulator. Finally, the performance of the algorithm is evaluated with dynamic simulations.

Bearing capacity of large diameter PHC pile and large diameter composite pile (대구경 PHC말뚝 및 대구경 복합말뚝($\phi$1,000mm) 지지력 산정에 관한 연구)

  • Shin, Yun-Sup;Park, Jae-Hyun;Hwang, Ui-Seong;Cho, Sung-Han;Chung, Moon-Kyung;Lee, Jin-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.351-359
    • /
    • 2010
  • Large PHC piles with a diameter of 1,000mm or larger were recently introduced for the first time in Korea. This paper presents full-scale static and dynamic pile load tests performed on two 1,000mm PHC piles and two composite piles with steel pipe piles of the same diameter in the upper portion, installed by driving and pre-boring. The objectives of the tests include evaluating pile drivability, load-settlement relation, allowable bearing capacity, and the stability of mechanical splicing element for the composite pile(a.k.a. non-welding joint). The performance of the large diameter PHC piles were thought to be satisfactory compared to that of middle sized PHC piles with a long history of successful applications in the domestic and foreign markets.

  • PDF