• Title/Summary/Keyword: Drip Irrigation

Search Result 95, Processing Time 0.034 seconds

Studies on the Control of Bitter Pit by Calcium Foliar Application and Drip Irrigation in Apples(Malus domestica Borkh.) (칼슘엽면살포 및 점적관수에 의한 사과 고두병 발생억제)

  • Kim, MS;Ko, KC
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.6 no.1
    • /
    • pp.73-80
    • /
    • 2004
  • This study was conducted to determine the effect of several kinds of calcium foliar application and drip irrigation on the bitter pit incidence of apple. CaCl2, inorganic calcium compound, was the most effective in increasing the calcium concentration in the fruit flesh, and reducing bitter pit incidence. Calcium spray in the later part of the growing season was more effective than in the earlier part. Drip irrigation applied during the dry spells increased calcium concentration in the fruit flesh, and reduced bitter pit incidence.

A Numerical Model of Three-dimensional Soil Water Distribution for Drip Irrigation Management under Cropped Conditions (작물 흡수를 고려한 3차원 토양수분 분포 모델 개발을 통한 최적 점적 관개 연구)

  • Kwon, Jae-Phil;Kim, Seung-Hyun;Yoo, Sun-Ho;Ro, Hee-Myong
    • Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.116-123
    • /
    • 2000
  • A numerical model of three-dimensional soil water distribution for drip irrigation management under cropped conditions was developed using Richards equation in Cartesian coordinates. The model accounts for both seasonal and diurnal changes in evaporation and transpiration, and the growth of plant root and the shape of root zone. Solutions were numerically approximated using the Crank-Nicolson implicit finite difference technique on the block-centered grid system and the Gauss-Seidel elimination in tandem. The model was tested under several conditions to allow the flow rates and configurations of drip emitters vary. In general, simulation results agreed well with experimental results and were as follows. The velocity of soil-water flow decreased drastically with distance from the drip source, and the rate of expansion of the wetted zone decreased rapidly during irrigation. The wetting front of wetted zone from a surface drip emitter traveled farther in vertical direction than in horizontal direction. Under this experimental weather condition, water use efficiency of a drip-irrigated apple field was greatest for 4-drip-emitter system buried at 25 cm, resulting from 10% increase in transpiration but 20% reduction in soil evaporation compared to those for surface 1-drip emitter system. Soil moisture retention curve obtained using disk tension infiltrometer showed significant difference from the curve obtained with pressure plate extractor.

  • PDF

Effect of Drip Irrigation Level on Soil Salinity and Growth of Broccoli (Brassica oleracea L. var. italica) in Saemangeum Reclaimed Tidal Land (새만금간척지에서 점적관수량이 토양염농도와 녹색꽃양배추의 생육에 미치는 영향)

  • Bae, Huisu;Hwang, Jaebok;Kim, Haksin;Gu, Bonil;Choi, Inbae;Park, Taeseon;Park, Hongkyu;Lee, Suhwan;Oh, Yangyeol;Lee, Sanghun;Lee, Geonhwi
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.275-280
    • /
    • 2015
  • The objective of this study was to investigate the effect of drip irrigation level on soil salinity and growth of broccoli (Brassica oleracea L. var. italica) at the 'Saemangeum Reclaimed Tidal Land' from April to June, 2015. Drip irrigation was conducted at 1.5, 3.0 and $6.0mm{\cdot}day^{-1}$ level for reduction of resalinization in the plastic vinyl house using 10cm spacing drip irrigation tape. At harvesting stage, the average EC of surface soil was $10.9dS{\cdot}m^{-1}$ for $1.5mm{\cdot}day^{-1}$, $11.5dS{\cdot}m^{-1}$ for $3.0mm{\cdot}day^{-1}$ and $5.1dS{\cdot}m^{-1}$ for $6.0mm{\cdot}day^{-1}$ and was significantly reduced by 52~56% in $6.0mm{\cdot}day^{-1}$ treated plot compared to those in 1.5 and $3.0mm{\cdot}day^{-1}$ plots. The fresh bud weights of 1.5, 3.0 and $6.0mm{\cdot}day^{-1}$ treatment plots were 60.9, 129.1 and $371.3g{\cdot}plant^{-1}$, respectively. The estimated soil EC for 50% yield reduction was $7.6dS{\cdot}m^{-1}$ and the desalinization depth by drip irrigation was 30~40cm in soil profile. The total amount of drip irrigation water was estimated to be 422mm and the daily drip irrigation level was $6.0mm{\cdot}day^{-1}$ for the prevention of resalinization during the broccoli growing period at the 'Saemangeum Reclaimed Tidal Land'. Our results suggested that drip irrigation shows effectiveness on the lowering the soil salinity according to the drip irrigation quantity but it needs more research on this study because dynamics of salts in soil can vary with many factors such as soil physico-chemical properties and seasonal climate.

Analysis of Disk Filter Head Losses due to the Shapes of Disk Grooves in Drip Irrigation System (점적관개용 디스크 여과기의 디스크 홈 단면 형상에 따른 수두 손실 특성 분석)

  • Jung, Seung-Yeon;Choi, Won;Choi, Jin-Yong;Kim, Maga;Lee, Yoonhee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.25-36
    • /
    • 2018
  • Drip irrigation system is a low energy cost method which can efficiently save and supply water by dropping water slowly on the crop's root zone during crop growth. In the drip irrigation system, disk filters take an important role to physically remove impurity (inorganic and suspended organic) particles present in agricultural water which can cause emitter clogging. For the purpose, both top-and-bottom surfaces of the disk are grooved in micron size flowing from outside to inside. However, many congested flow paths in disk filter media incur higher head loss of inflow water resulting in relatively decreasing velocities depending on operation time than sand and mesh filters. Therefore, it is important to optimize the structure of disk filter in micro irrigation system. The head loss of disk filter media takes also charge of more than 60 % of total head loss in whole disk filter. This study is to find the appropriate cross-sectional shape of the disk groove to minimize the head loss by executing the experiment. The experiment used three disk filters that have similar filter body but have a half-elliptic and two kinds of triangular cross sections. The experimental results showed that the disk filter with half-elliptic cross sections of disk grooves have less head loss than the disk filter with regular triangular one.

Estimation of the Optimum Installation Depth of Soil Moisture Sensor in an Automatic Subsurface Drip Irrigation System for Greenhouse Cucumber (시설오이 지중관비시 자동관수센서의 적정 매설깊이)

  • Lim, Tae-Jun;Kim, Ki-In;Park, Jin-Myeon;Noh, Jae-Seung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.2
    • /
    • pp.99-104
    • /
    • 2013
  • Vegetables production in greenhouse are typically intensely managed with high inputs of fertilizers and irrigation water, which increases the risk of ground-water nitrate contamination. In 2010 and 2011, a study was conducted to determine the appropriate depth of soil moisture sensor for automatic irrigation control to use water and nitrogen efficiently under subsurface drip irrigation (SDI) systems. The irrigation line for SDI placed 30 cm below soil surface and tensiometer was used as soil moisture sensor. Three tensiometer treatments placed at 10 (SDI-T10), 20 (SDI-T20) and 30 cm (SDI-T30) depths below soil surface under SDI. These are also compared to SUR-T20 treatment where tensiometer placed at 20 cm below soil surface under surface drip irrigation (SUR) systems. The growth of cucumber was not statistically different between SUR and SDI without SDI-T30 treatment. Fruit yields (Mg/ha) were 57.0 and 56.9 (SDI-T10), 56.0 and 60.5 (SDI-T20), 40.9 and 41.2 (SDI-T30) and 56.6 and 54.3 (SUR-T20) for 2010 and 2011, respectively. Slightly higher total yield was observed in tensiometer placed 20 cm below the soil surface, although no significant differences were found between SDI-T10 and SDI-T20 under SDI treatments. In addition, nitrogen application rates and daily irrigation rates were lowest in SDI-T20 compared with other SDIs and SUR treatments. Nitrogen and daily irrigation application under SDI-T20 was lower than that under SUR-T20 by 6.0%. These findings suggested tensiometer 20 cm depth under SDI systems was best for cucumber production in greenhouse.

Effect of Irrigation Methods on the Growth and Yield of Rice in Desert Climates (사막토양 환경에서 벼 재배시 관개방법에 따른 생육 및 수량 특성)

  • Jung, Ki-Youl;Lee, Sang-Hun;Jeong, Jae-Hyeok;Chun, Hyen-Chung;Chea, Se-Eun;Kim, Sang-Yoon;Jeon, Seung-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.3
    • /
    • pp.147-154
    • /
    • 2022
  • This study was conducted by directly sowing Asemi in late April at 30 × 10 cm intervals to determine the optimal irrigation method and irrigation amount to maximize the use of limited agricultural water and to increase the yield when growing rice in a desert climate. Conventional irrigation (Conv.), surface drip irrigation (Sur), subsurface drip irrigation (Sub.), and sprinkler irrigation (Spr.) methods were used. The following amounts of irrigation were tested based on field capacity (0.33 bar): 80% (V/V, FC80), 100% (FC100), and 120% (FC120), and data for 2 years were averaged. The total amount of irrigation by irrigation method was the lowest, at 627 ton/10 a, for Sub. irrigation with the FC80 treatment, which was 60.4% less than the amount of irrigation with the FC120 treatment (1,584 ton/10a). Sub. irrigation with the FC120 treatment gave the greatest amount of rice, at 665 kg/10 a, and this condition obtained a yield of 88.1% (754 kg/10 a) of the yield obtained with the conventional treatment. Therefore, when planting rice in a desert climate, subsurface drip irrigation at 120% of field capacity is considered advantageous to increase water use efficiency and crop yield.

Response of Soybean (Glycine max L.) to Subsurface Drip Irrigation with Different Dripline Placements at a Sandy-loam Soil

  • Lee, Sanghun;Jung, Ki-Yuol;Chun, Hyen-Chung;Choi, Young-Dae;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.2
    • /
    • pp.79-89
    • /
    • 2018
  • Subsurface drip irrigation (SDI) system is considered one of the most effective methods for water application. A 2-year field study was conducted to investigate the effect of SDI systems with various dripline spacing (0.7 or 1.4 m) and position (under furrow or ridge) on soybean (Glycine max L.) production at a sandy-loam soil in Miryang, South Korea. For 2016-2017, average grain yield in SDI irrigated plots, $3.16Mg\;ha^{-1}$, was statistically greater than rainfed irrigated plot ($2.63Mg\;ha^{-1}$). Soybean grain yield averaged $3.25Mg\;ha^{-1}$ for the 0.7 m dripline spacing and $3.07Mg\;ha^{-1}$ for the 1.4 m spacing for the two-year period compared to a rainfed irrigated average of $2.63Mg\;ha^{-1}$ for the same period. Soybean treated with SDI system had significantly greater values of normalized difference vegetation index and stomatal conductance, indicating that soybean plants in SDI plots had greater photosynthetic and stomatal activity due to the higher water availability in soil. Irrigation water use efficiency (IWUE) was greatest in the plot of 0.7 m spacing installed under ridge position than any other plot across growing season. Average soil water content in plots with 0.7 m dripline spacing was $0.21m^3\;m^{-3}$ at 5 cm depth layer, which was 45% greater compared to the plots with 1.4 m spacing, even though the gross irrigation amounts were greater in 1.4 m spacing plots. It is concluded that wide dripline spacing (1.4 m) is probably the more economical installation design for SDI system compared to 0.7 m spacing in this study soil because the initial cost for dripline may be reduced with wide spacing design, even though the IWUE is greater in the plot of 0.7 m dripline spacing.

Development of Soil Moisture Controlling System for Smart Irrigation System (스마트 관개 시스템을 위한 토양 수분 제어시스템 개발)

  • Kim, Jongsoon;Choi, Won-Sik;Jung, Ki-Yeol;Lee, Sanghun;Park, Jong Min;Kwon, Soon Gu;Kim, Dong-Hyun;Kwon, Soon Hong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.227-234
    • /
    • 2018
  • The smart irrigation system using ICT technology is crucial for stable production of upland crops. The objective of this study was to develop a smart irrigation system that can control soil water, depending on irrigation methods, in order to improve crop production. In surface irrigation, three irrigation methods (sprinkler irrigation (SI), surface drip irrigation (SDI), and fountain irrigation (FI)) were installed on a crop field. The soil water contents were measured at 10, 20, 30, and 40 cm depth, and an automatic irrigation system controls a valve to maintain the soil water content at 10 cm to be 30%. In subsurface drip irrigation (SSDI), the drip lines were installed at a depth of 20 cm. Controlled drainage system (CDS) was managed with two ground water level (30 cm and 60 cm). The seasonal irrigation amounts were 96.4 ton/10a (SDI), 119.5 ton/10a (FI), and 113 ton/10a (SI), respectively. Since SDI system supplied water near the root zone of plants, the water was saved by 23.9% and 17.3%, compared with FI and SI, respectively. In SSDI, the mean soil water content was 38.8%, which was 10.8% higher than the value at the control treatment. In CDS, the water contents were greatly affected by the ground water level; the water contents at the surface zone with 30 cm ground water level was 9.4% higher than the values with 60 cm ground water level. In conclusion, this smart irrigation system can reduce production costs of upland crops.

Performance of Drip Irrigation System in Banana Cultuivation - Data Envelopment Analysis Approach

  • Kumar, K. Nirmal Ravi;Kumar, M. Suresh
    • Agribusiness and Information Management
    • /
    • v.8 no.1
    • /
    • pp.17-26
    • /
    • 2016
  • India is largest producer of banana in the world producing 29.72 million tonnes from an area of 0.803 million ha with a productivity of 35.7 MT ha-1 and accounted for 15.48 and 27.01 per cent of the world's area and production respectively (www.nhb.gov.in). In India, Tamil Nadu leads other states both in terms of area and production followed by Maharashtra, Gujarat and Andhra Pradesh. In Rayalaseema region of Andhra Pradesh, Kurnool district had special reputation in the cultivation of banana in an area of 5765 hectares with an annual production of 2.01 lakh tonnes in the year 2012-13 and hence, it was purposively chosen for the study. On $23^{rd}$ November 2003, the Government of Andhra Pradesh has commenced a comprehensive project called 'Andhra Pradesh Micro Irrigation Project (APMIP)', first of its kind in the world so as to promote water use efficiency. APMIP is offering 100 per cent of subsidy in case of SC, ST and 90 per cent in case of other categories of farmers up to 5.0 acres of land. In case of acreage between 5-10 acres, 70 per cent subsidy and acreage above 10, 50 per cent of subsidy is given to the farmer beneficiaries. The sampling frame consists of Kurnool district, two mandals, four villages and 180 sample farmers comprising of 60 farmers each from Marginal (<1ha), Small (1-2ha) and Other (>2ha) categories. A well structured pre-tested schedule was employed to collect the requisite information pertaining to the performance of drip irrigation among the sample farmers and Data Envelopment Analysis (DEA) model was employed to analyze the performance of drip irrigation in banana farms. The performance of drip irrigation was assessed based on the parameters like: Land Development Works (LDW), Fertigation costs (FC), Volume of water supplied (VWS), Annual maintenance costs of drip irrigation (AMC), Economic Status of the farmer (ES), Crop Productivity (CP) etc. The first four parameters are considered as inputs and last two as outputs for DEA modelling purposes. The findings revealed that, the number of farms operating at CRS are more in number in other farms (46.66%) followed by marginal (45%) and small farms (28.33%). Similarly, regarding the number of farmers operating at VRS, the other farms are again more in number with 61.66 per cent followed by marginal (53.33%) and small farms (35%). With reference to scale efficiency, marginal farms dominate the scenario with 57 per cent followed by others (55%) and small farms (50%). At pooled level, 26.11 per cent of the farms are being operated at CRS with an average technical efficiency score of 0.6138 i.e., 47 out of 180 farms. Nearly 40 per cent of the farmers at pooled level are being operated at VRS with an average technical efficiency score of 0.7241. As regards to scale efficiency, nearly 52 per cent of the farmers (94 out of 180 farmers) at pooled level, either performed at the optimum scale or were close to the optimum scale (farms having scale efficiency values equal to or more than 0.90). Majority of the farms (39.44%) are operating at IRS and only 29 per cent of the farmers are operating at DRS. This signifies that, more resources should be provided to these farms operating at IRS and the same should be decreased towards the farms operating at DRS. Nearly 32 per cent of the farms are operating at CRS indicating efficient utilization of resources. Log linear regression model was used to analyze the major determinants of input use efficiency in banana farms. The input variables considered under DEA model were again considered as influential factors for the CRS obtained for the three categories of farmers. Volume of water supplied ($X_1$) and fertigation cost ($X_2$) are the major determinants of banana farms across all the farmer categories and even at pooled level. In view of their positive influence on the CRS, it is essential to strengthen modern irrigation infrastructure like drip irrigation and offer more fertilizer subsidies to the farmer to enhance the crop production on cost-effective basis in Kurnool district of Andhra Pradesh, India. This study further suggests that, the present era of Information Technology will help the irrigation management in the context of generating new techniques, extension, adoption and information. It will also guide the farmers in irrigation scheduling and quantifying the irrigation water requirements in accordance with the water availability in a particular season. So, it is high time for the Government of India to pay adequate attention towards the applications of 'Information and Communication Technology (ICT) and its applications in irrigation water management' for facilitating the deployment of Decision Supports Systems (DSSs) at various levels of planning and management of water resources in the country.

Evaluating efficiency of automatic surface irrigation for soybean production

  • Jung, Ki-yuol;Lee, Sang-hun;Chun, Hyen-chung;Choi, Young-dae;Kang, Hang-won
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.252-252
    • /
    • 2017
  • Nowadays water shortage is becoming one of the biggest problems in the Korea. Many different methods are developed for conservation of water. Soil water management has become the most indispensable factor for augmenting the crop productivity especially on soybean (Glycine max L.) because of their high susceptibility to both water stress and water logging at various growth stages. The farmers have been using irrigation techniques through manual control which farmers irrigate lands at regular intervals. Automatic irrigation systems are convenient, especially for those who need to travel. If automatic irrigation systems are installed and programmed properly, they can even save you money and help in water conservation. Automatic irrigation systems can be programmed to provide automatic irrigation to the plants which helps in saving money and water and to discharge more precise amounts of water in a targeted area, which promotes water conservation. The objective of this study was to determine the possible effect of automatic irrigation systems based on soil moisture on soybean growth. This experiment was conducted on an upland field with sandy loam soils in Department of Southern Area Crop, NICS, RDA. The study had three different irrigation methods; sprinkle irrigation (SI), surface drip irrigation (SDI) and fountain irrigation (FI). SI was installed at spacing of $7{\times}7m$ and $1.8m^3/hr$ as square for per irrigation plot, a lateral pipe of SDI was laid down to 1.2 m row spacing with $2.3L\;h^{-1}$ discharge rate, the distance between laterals was 20 cm spacing between drippers and FI was laid down in 3m interval as square for per irrigation plot. Soybean (Daewon) cultivar was sown in the June $20^{th}$, 2016, planted in 2 rows of apart in 1.2 m wide rows and distance between hills was 20 cm. All agronomic practices were done as the recommended cultivation. This automatic irrigation system had valves to turn irrigation on/off easily by automated controller, solenoids and moisture sensor which were set the reference level as available soil moisture levels of 30% at 10cm depth. The efficiency of applied irrigation was obtained by dividing the total water stored in the effective root zone to the applied irrigation water. Results showed that seasonal applied irrigation water amounts were $60.4ton\;10a^{-1}$ (SI), $47.3ton\;10a^{-1}$ (SDI) and $92.6 ton\;10a^{-1}$ (FI), respectively. The most significant advantage of SDI system was that water was supplied near the root zone of plants drip by drip. This system saved a large quantity of water by 27.5% and 95.6% compared to SI, FI system. The average soybean yield was significantly affected by different irrigation methods. The soybean yield by different irrigation methods were $309.7kg\;10a^{-1}$ from SDI $282.2kg\;10a^{-1}$ from SI, $289.4kg\;10a^{-1}$ from FI, and $206.3kg\;10a^{-1}$ from control, respectively. SDI resulted in increase of soybean yield by 50.1%, 7.0% 9.8% compared to non-irrigation (control), FI and SI, respectively. Therefore, the automatic irrigation system supplied water only when the soil moisture in the soil went below the reference. Due to the direct transfer of water to the roots water conservation took place and also helped to maintain the moisture to soil ratio at the root zone constant. Thus the system is efficient and compatible to changing environment. The automatic irrigation system provides with several benefits and can operate with less manpower. In conclusion, improving automatic irrigation system can contribute greatly to reducing production costs of crops and making the industry more competitive and sustainable.

  • PDF