• Title/Summary/Keyword: Drip Flame Time

Search Result 3, Processing Time 0.014 seconds

A Study on the Self-extinguishing for Aircraft Wire (항공기용 배선의 자가소화성에 관한 연구)

  • Jeong, Duck-Young;Yi, Baeck-Jun;Lee, Jong-Hee
    • Journal of Aerospace System Engineering
    • /
    • v.5 no.1
    • /
    • pp.13-16
    • /
    • 2011
  • All components such as structure, engine, electrical equipment, wire etc. should have certified qualities and functions for safe flight. The wire like a blood vessel of man is connected with most components and supply a electrical signal or power to them and only certified wire through a lot of tests such as rating, flame resistance, self-extinguishing, protection of EMI etc. must be used in aircraft. In other words, the wire should observe many certification requirements because it is one of the most important components.

A Study on the Preparation of Thermoplastic Powder Coating Material and Its Flame Retardancy (열가소성 분말 코팅소재 제조 및 난연특성 연구)

  • Lee, Soon-Hong;Chung, Hwa-Young
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.45-52
    • /
    • 2010
  • The purpose of this study is application to flame retardant powder coating(FRPC) material consisting of ammonium polyphosphate(APP) and magnesium hydroxide($Mg(OH)_2$) as a halogen free flame retardant into thermoplastic resin(LDPE-g-MAH). For improvement of adhesion, LDPE-g-MAH was synthesized from low density polyethylene(LDPE) and maleic anhydride(MAH). The mechanical properties as melt flow index, pencil hardness, cross-hatch adhesion and impact resistance of FRPC were measured. Also, the limited oxygen index(LOI) values were measured 17.3vol%, 31.1vol% and 33.7vol% for LDPE-g-MAH, FRPC-3(APP 15wt%, $Mg(OH)_2$ 15wt%) and FRPC-5(APP 30 wt%), respectively. The thermo gravimetry/differential thermal analysis(TG/DTA) of FPRC-3 was observed endothermic peak at $340^{\circ}C$ and $450^{\circ}C$, it was confirmed predominant thermal stability though the wide temperature range by APP and $Mg(OH)_2$. It was showed V-0 grade for FRPC-3 and FRPC-4(APP 20wt%, $Mg(OH)_2$ 10wt%) that a char formation and drip suppressing effect, and combustion time reduced by UL94(vertical burning test). It was confirmed that flame retardancy was improved with the synergy effect because of char formation by APP and $Mg(OH)_2$.

A Study on the Preparation of Halogen Free M-P Flame Retardant and Its Application to Composite Material (비할로겐 M-P 난연제 제조 및 복합재료 응용 연구)

  • Lee, Soon-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.63-71
    • /
    • 2009
  • In order to improve flame retardancy, the halogen free organic melamine phosphate(M-P) flame retardant was synthesized from melamine and phosphoric acid by the reaction of precipitation. The ignition test was carried out preparing hybrid flame retardant compound($H_bFRC$) consisting of organic M-P and inorganic Mg$(OH)_2$ as a flame retardant in the polyolefin resins. The flame retardancy and mechanical properties of flame retardant aluminum composite panel($H_bFRC$-ACP) were performed to investigate the possibility of the composite material, which was contained M-P, as a inner core for $H_bFRC$-ACP. For this study, the results of ignition test indicate that a char formation and drip suppressing effect, and combustion time reduced as the content of M-P increased. The limited oxygen index(LOI) values were measured 17.4vol% and 31.5vol% for LDPE only and $H_bFRC$-3(M-P content: 15wt%), respectively. And it was verified that the $H_bFRC$-3 was needed more oxygen quantity with the increase of M-P content when it combustion. Also, the results from thermogravimetric analysis were observed endothermic peak at $350^{\circ}C$ and $550^{\circ}C$, it was confirmed predominant thermal stability though the wide temperature range by the mixture of M-P and Mg$(OH)_2$. The LDPE-ACP (using only LDPE as a inner core), $35.13kW/m^2$ of heat release rate(HRR) and 13.43MJ/m2 of total heat release(THR) were measured while the $H_bFRC$-ACP, $10.44kW/m^2$ of HRR and 1.84MJ/m2 of THR were measured by results of cone calorimeter test. In case of $H_bFRC$-ACP, the average gas emission amount of CO and $CO_2$ could be decreased down to 25% and 20%, respectively, in comparison with LDPE-ACP. The mechanical properties such as tensile strength, bending strength and adhesion strength of $H_bFRC$-ACP were revealed slightly high values $54N/mm^2$, $152N/mm^2$ and 120N/25mm, respectively, compared with LDPE-ACP. It was confirmed that flame retardancy was improved with the synergy effect because of char formation by M-P and hydrolysis by Mg$(OH)_2$. The result of this study suggest that $H_bFRC$ can be applied for an adequate halogen free flame retardant composite material as a inner core for ACP.