• Title/Summary/Keyword: Drinking water source

Search Result 227, Processing Time 0.027 seconds

Recent Development of Drinking Water Quality Standard and its Application (음용수질 기준과 관리방안)

  • 권숙표
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.83-94
    • /
    • 1992
  • Recently water demand is increasing as the industry prospers. The increase of water demand is followed by the increase of wastewater discharge which pollutes rivers and ground water extensively. These rivers, reservoirs and ground water are sources for drinking water and their contamination affects the quality of water supply and other potable water. In Korea there are 776 water treatment plants which supply drinking water from main rivers or reservoirs. Rivers are the biggest water source for drinking water is being contaminated, the innovation of treatment process is needed. The construction and operation of water supply facilities is under the control of the Ministry of Construction and the water supply offices of cities and provinces. However, drinking water quality is under the control of the bureau of sanitation in the Ministry of Health and Social Affairs. There are 33 items in drinking water quality standards of Korea. Trihalomethanes, Selenium, Diazinone and other three of pesticides have been included lately, The Ministry of Health and Social Affairs is planning to enhance. the level of $VOC_S$(Vola-tile Organic Compounds) standard. Drinking water quality standard is the goal to protect the quality of supply water and ground water. In order to protect the source water from domestic or industrial water, technological improvement and adequate investment should be urgently made. The ultimate goal of drinking water quality is safety and health of consumers. The more stringent the standard are, the better the water quality will be. As the drinking water quality standards become more stringent this year, various and positive solutions by the authorities concerned must be prepared.

  • PDF

Cognition on Quality and Cost of Small Drinking Water Plants in Gyungbuk Region (경북지역 소규모수도시설 이용자의 수질.비용에 대한 인식)

  • Kang, Mee-A;Yang, Myeong-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.675-682
    • /
    • 2010
  • Groundwater is an essential drinking water source in Gyungbuk, South Korea. The primary source of nitrate in groundwater is from nitrogen fertilizers. Efficient management of a small drinking water plant requires a good understanding of its status such as the objective and the cognition of users. The objective of this study is to understand user situation and produce useful user-friendly policy based on user cognition. Most people who participated in this study, should take their groundwater from a good quality source. Even though they would like to have a good facility for getting safe water, they were reluctant to do it due to the cost used. It means that people who drink groundwater have no idea that health safety is affected by groundwater quality. The volume used depended upon personal activities such as agriculture and stockbreeding. We can easily find groundwater with nitrate that exceeds drinking water standards. Therefore, we have to carry out groundwater management with two categories ; 1) drinking water only and 2) others according to objectives in small drinking water systems.

Addition of a Worm Leachate as Source of Humic Substances in the Drinking Water of Broiler Chickens

  • Gomez-Rosales, S.;Angeles, M. De L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.215-222
    • /
    • 2015
  • The objective of this research was to evaluate the growth performance, the apparent ileal digestibility of nitrogen and energy, the retention of nutrients and the apparent metabolizable energy corrected to zero nitrogen retention (AMEn) in broiler chickens supplemented with increasing doses of a worm leachate (WL) as a source of humic substances (HS) in the drinking water. In Exp. 1, 140 male broilers were penned individually and assigned to four WL levels (0%, 10%, 20%, and 30%) mixed in the drinking water from 21 to 49 days of age. Water was offered in plastic bottles tied to the cage. In Exp. 2, 600 male broilers from 21 to 49 days of age housed in floor pens were assigned to three levels of WL (0%, 10%, and 20%) mixed in the drinking water. The WL was mixed with tap water in plastic containers connected by plastic tubing to bell drinkers. The results of both experiments were subjected to analysis of variance and polynomial contrasts. In Exp. 1, the daily water consumption was similar among treatments but the consumption of humic, fulvic, and total humic acids increased linearly (p<0.01) as the WL increased in the drinking water. The feed conversion (p<0.01) and the ileal digestibility of energy, the excretion of dry matter and energy, the retention of dry matter, ash and nitrogen and the AMEn showed quadratic responses (p<0.05) relative to the WL levels in drinking water. In Exp. 2, the increasing level of WL in the drinking water had quadratic effects on the final body weight, daily weight gain and feed conversion ratio (p<0.05). The addition of WL as a source of HS in the drinking water had beneficial effects on the growth performance, ileal digestibility of energy, the retention of nutrients as well on the AMEn in broiler chickens; the best results were observed when the WL was mixed at levels of 20% to 30% in the drinking water.

The Effect of Drinking Alcohol on Bio-electrical Potential at Twelve Source Points : A Cross-over Study (음주(飮酒)가 십이원혈(十二原穴)의 체표전위에 미치는 영향 : 교차대조연구)

  • Kim, Jung-Wan;Kim, Jae-Hong;Yim, Yun-Kyoung
    • The Journal of Korean Medicine
    • /
    • v.39 no.1
    • /
    • pp.44-54
    • /
    • 2018
  • Objectives: The objective of this study is to investigate the effects of drinking alcohol on bio-electrical potential at twelve source points. Methods: Twenty healthy adults were assigned to alcohol and water groups by a random cross-over design. Bio-electrical potential at twelve source points were measured before and after drinking alcohol or water and the change of bio-electrical potential was analyzed and compared between the alcohol and the water groups. Results: Bio-electrical potential at LI4, ST42, KI3, PC7, TE4, GB40, LR3 in the alcohol group was significantly increased compared to those in the water group. Conclusions: Drinking alcohol increased bio-electrical potential at source points of LI, ST, KI, PC, TE, GB and LR in healthy human subjects.

Pesticide Analysis in Drinking Water by SPE Method (SPE법에 의한 음료수중 농약성분)

  • 김형석
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.2
    • /
    • pp.59-66
    • /
    • 1995
  • According to the population increase and industrialization, the drinking water source, Han River and other sources, are contaminated by industrial wastewater, domestic sewage, and agricultural discharges. Among the contaminants, and toxic substances, pesticides is most interesting items (or human health Our drinking water has some problems of THMs, Fe, odor, etc., $o many people use groundwater or bottled water. But sometimes there are many reports about groundwater contamination owing to the agricultural chemicals, waste disposal, industrial wastewater. In America, there are about 45,000 groundwave supply company and in korea about 20% of total population are using groundwave as drinking water source. In America, studies about SEE is increasing Instead of liquid- liquid extraction method, because of many advantages of SEE methods. Author tried to investigate SPE methods in the spiked water samples to compare with liquid- liquid extraction method and got the following results. The amount of organic solvents which are used In SPE method is less than 1/10 compared with liquid- liquid method, the analytical duration time is shortened, and the ethyl acetate was good fluent among several organic solvents.

  • PDF

Application of a Watershed-Based Land Prioritization Model for the Protection of Drinking Water Reservoir (상수원 보호를 위한 유역기반 토지관리 우선순위 모델 적용)

  • Lee, Jee Hyun;Choi, Ji Yang;Park, Seok Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.397-408
    • /
    • 2004
  • Due to the growing impact of non-point source pollution and limitation of water treatment technology, a new policy of water quality management, called a source protection, is now becoming more important in drinking water supply. The source protection means that the public agency purchases the pollution sensitive area, such as riparian zone, and prohibit locations of point and non-point sources. Many studies have reported that this new policy is more economical in drinking water supply than the conventional one. However, it is very difficult to determine location and size of the pollution sensitive zone in the watershed. In this paper, we presented the scientific criteria for the priority of the pollution sensitive zone, along with a case study of the upstream watershed of the Paldang Reservoir, Han River. This study includes applications of the analytical hierarchy process(AHP) and a watershed-based land prioritization(WLP) model. After major criteria affecting water quality were selected, the AHP and geographic analysis were performed. The WLP model allowed us to include both quantity and quality criteria, using AHP as the multi-criteria method in making decision and reflecting local characteristics and various needs. By adding a travel-time function, which represents the prototype effectively, the results secured adaptability and scientific objectivity as well. As such, the WLP model appeared to provide reasonable criteria in determining the prioritization of land acquisition. If the tested data are used with a validated travel-time and AHP method is applied after further discussion among experts in such field, highly reliable results can be obtained.

Drinking Water Usage with Riverbed water and Groundwater

  • Kim, Il-Bae;Lee, Soo-Sik;Choi, Yun-Yeong;Suh, Jung-Ho;Lee, Hak-Sung
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.151-154
    • /
    • 2003
  • With estmating drinking water demands of Ulsan city, the amount would be increased from 523,000ton/day in 2006 to 635,000 ton/day in 2016. Also, the dependence of Nakdong River on the Ulsan city as a source of drinking water will be very high up to 54.4% of total drinking water demands. Small-scale drinking water dam is no economical because of excessive construction cost and long construction period. However, development of riverbed and ground water of existing rivers is more economical than that of small-scale drinking water dam. In this study, to utilized Dongchun River as a drinking water resource, Modflow model was used to predict the amount of riverbed and ground water of Dongchun River basin. As a result, available amount of riverbed water was assumed in 6,000 ton/day by worst case (when perfect dry stream) and in case of ground water, it was assumed in 17,800 ton/day.

  • PDF

A Ten-year Survey of Giardia Cysts in Drinking Water Supplies of Seoul, the Republic of Korea

  • Lee, Mok-Young;Cho, Eun-Joo;Lee, Jin-Hyo;Han, Sun-Hee;Park, Yong-Sang
    • Parasites, Hosts and Diseases
    • /
    • v.49 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • To understand the distribution of Giardia cysts in drinking water supplies in Seoul, Korea, we collected water samples quarterly at 6 intakes in the Han River, its largest stream and 6 conventional water treatment plants (WTPs) serving drinking water, from 2000 to 2009. Giardia cysts in each of 10 L water were confirmed in 35.0% of intake water samples and the arithmetic mean was 1.65 cysts/10 L (range 0-35 cysts/10 L). The lowest cyst density was observed at Paldang and Kangbuk intakes, and the pollution level was higher at 4 intakes downstream. It seemed that these 4 intakes were under influence of Wangsuk stream at the end of which cysts were found in all samples with the mean of 140 cysts/10 L. The annual mean number of cysts was 0.21-4.21 cysts/10 L, and the cyst level at the second half of the 10 years was about 1/5 of that at first half on average. The cysts were more frequently found in winter, and their mean density was 3.74 cysts/10 L in winter and 0.80-1.08 cysts/10 L in other seasons. All finished water samples collected at 6 WTPs were negative for Giardia in each of 100 L sample for 10 years and cyst removal by physical process was average 2.9-log. It was concluded that conventional water treatment at 6 WTPs of Seoul appears to remove the cysts effectively under the present level of their source water. Domestic wastewater from the urban region could be an important source of Giardia pollution in the river.

Environmental Source of Arsenic Exposure

  • Chung, Jin-Yong;Yu, Seung-Do;Hong, Young-Seoub
    • Journal of Preventive Medicine and Public Health
    • /
    • v.47 no.5
    • /
    • pp.253-257
    • /
    • 2014
  • Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

Introduction of Corrosion Index System for Stability of Drinking Water Quality (음용수질의 안정성을 위한 부식지수제도의 도입)

  • Kim, Yeong-Kwan;Kim, Jin-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.707-717
    • /
    • 2011
  • Replacement of old water distribution pipes for protecting water quality induced by pipe corrosion requires enormous budget. Even after the replacement, however, corrosion can occur again at any times and, therefore, inhibitive measure of the corrosion will be not only economical but needed to diminish the consumers' distrust on tap water quality. In 2008, National Environmental Research Institute did a survey on 8 major drinking water source and proposed to establish the Langelier Saturation Index(LI) as a corrosion index in Drinking Water Quality Criteria. Among the water industries of Korea, K-Water is the only one that set up the level of pH over 7.0 and LI above -1.5 on yearly average basis. However, no systematic regulation including LI to inhibit the corrosive tendency has been established yet. In this paper, LI values out of 31 drinking water treatment plants were analyzed and two-stage control of LI value as a measure of corrosive tendency of water is proposed. Primarily, water treatment facilities may operate the system at a target LI value below -1.5. Following the investigation on the effect caused by adjusting the LI value on water quality and corrosiveness, it will be desirable to improve LI value below -1.0 in the long run. In addition to the LI, supplemental use of Larson's modified ratio (LMR) which incorporates hydraulic detention time will be necessary. Several methods to prove the inhibitive effect of improving the LI value on water quality have been also suggested.