• Title/Summary/Keyword: Drilling Design

Search Result 269, Processing Time 0.022 seconds

Vibration control for serviceability enhancement of offshore platforms against environmental loadings

  • Lin, Chih-Shiuan;Liu, Feifei;Zhang, Jigang;Wang, Jer-Fu;Lin, Chi-Chang
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.403-414
    • /
    • 2019
  • Offshore drilling has become a key process for obtaining oil. Offshore platforms have many applications, including oil exploration and production, navigation, ship loading and unloading, and bridge and causeway support. However, vibration problems caused by severe environmental loads, such as ice, wave, wind, and seismic loads, threaten the functionality of platform facilities and the comfort of workers. These concerns may result in piping failures, unsatisfactory equipment reliability, and safety concerns. Therefore, the vibration control of offshore platforms is essential for assuring structural safety, equipment functionality, and human comfort. In this study, an optimal multiple tuned mass damper (MTMD) system was proposed to mitigate the excessive vibration of a three-dimensional offshore platform under ice and earthquake loadings. The MTMD system was designed to control the first few dominant coupled modes. The optimal placement and system parameters of the MTMD are determined based on controlled modal properties. Numerical simulation results show that the proposed MTMD system can effectively reduce the displacement and acceleration responses of the offshore platform, thus improving safety and serviceability. Moreover, this study proposes an optimal design procedure for the MTMD system to determine the optimal location, moving direction, and system parameters of each unit of the tuned mass damper.

Electrical resistivity tomography survey for prediction of anomaly in mechanized tunneling

  • Lee, Kang-Hyun;Park, Jin-Ho;Park, Jeongjun;Lee, In-Mo;Lee, Seok-Won
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.93-104
    • /
    • 2019
  • Anomalies and/or fractured grounds not detected by the surface geophysical and geological survey performed during design stage may cause significant problems during tunnel excavation. Many studies on prediction methods of the ground condition ahead of the tunnel face have been conducted and applied in tunneling construction sites, such as tunnel seismic profiling and probe drilling. However, most such applications have focused on the drill and blast tunneling method. Few studies have been conducted for mechanized tunneling because of the limitation in the available space to perform prediction tests. This study aims to predict the ground condition ahead of the tunnel face in TBM tunneling by using an electrical resistivity tomography survey. It compared the characteristics of each electrode array and performed an investigation on in-situ tunnel boring machine TBM construction site environments. Numerical simulations for each electrode array were performed, to determine the proper electrode array to predict anomalies ahead of the tunnel face. The results showed that the modified dipole-dipole array is, compared to other arrays, the best for predicting the location and condition of an anomaly. As the borehole becomes longer, the measured data increase accordingly. Therefore, longer boreholes allow a more accurate prediction of the location and status of anomalies and complex grounds.

Bonded-cluster simulation of tool-rock interaction using advanced discrete element method

  • Liu, Weiji;Zhu, Xiaohua;Zhou, Yunlai;Li, Tao;Zhang, Xiangning
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.469-477
    • /
    • 2019
  • The understanding of tool-rock interaction mechanism is of high essence for improving the rock breaking efficiency and optimizing the drilling parameters in mechanical rock breaking. In this study, the tool-rock interaction models of indentation and cutting are carried out by employing the discrete element method (DEM) to examine the rock failure modes of various brittleness rocks and critical indentation and cutting depths of the ductile to brittle failure mode transition. The results show that the cluster size and inter-cluster to intra-cluster bond strength ratio are the key factors which influence the UCS magnitude and the UCS to BTS ratio. The UCS to BTS strength ratio can be increased to a more realistic value using clustered rock model so that the characteristics of real rocks can be better represented. The critical indentation and cutting depth decrease with the brittleness of rock increases and the decreasing rate reduces dramatically against the brittleness value. This effort may lead to a better understanding of rock breaking mechanisms in mechanical excavation, and may contribute to the improvement in the design of rock excavation machines and the related parameters determination.

A comparative study of different active heave compensation approaches

  • Zinage, Shrenik;Somayajula, Abhilash
    • Ocean Systems Engineering
    • /
    • v.10 no.4
    • /
    • pp.373-397
    • /
    • 2020
  • Heave compensation is a vital part of various marine and offshore operations. It is used in various applications, including the transfer of cargo between two vessels in the open ocean, installation of topsides of an offshore structure, offshore drilling and for surveillance, reconnaissance and monitoring. These applications typically involve a load suspended from a hydraulically powered winch that is connected to a vessel that is undergoing dynamic motion in the ocean environment. The goal in these applications is to design a winch controller to keep the load at a regulated height by rejecting the net heave motion of the winch arising from ship motions at sea. In this study, we analyze and compare the performance of various control algorithms in stabilizing a suspended load while the vessel is subjected to changing sea conditions. The KCS container ship is chosen as the vessel undergoing dynamic motion in the ocean. The negative of the net heave motion at the winch is provided as a reference signal to track. Various control strategies like Proportional-Derivative (PD) Control, Model Predictive Control (MPC), Linear Quadratic Integral Control (LQI), and Sliding Mode Control (SMC) are implemented and tuned for effective heave compensation. The performance of the controllers is compared with respect to heave compensation, disturbance rejection and noise attenuation.

Tensile and Shear Strengths of New Type of Cast-in-Place Concrete Insert Anchors Under Monotonic Loading (새로운 형태의 선설치 인서트 앵커에 대한 단조 인장 및 전단강도 평가)

  • Jeon, Ju-Seong;Kim, Ji-Hoon;Oh, Chang-Soo;Lee, Chang-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.49-56
    • /
    • 2021
  • The damage to non-structural elements in buildings has been increasing due to earthquakes. In Korea, post-installed anchors produced overseas have been mainly used for seismic anchorage of non-structural components to structures. Recently, a new cast-in-place concrete insert anchor installed in concrete without drilling has been developed in Korea. In this paper, an experimental study was conducted to evaluate the tensile and shear strengths of the newly developed anchor under monotonic load. The failure modes of the tension specimens were divided into concrete breakout failure and steel failure, and all shear specimens showed steel failure. In both tension and shear, the maximum loads of specimens were greater than the nominal strengths predicted by the concrete design code (KDS 14 20 54). As a result, it is expected that the current code can also be used to calculate the strength of the developed cast-in anchor.

A Study on Application and Stability Analysis of Spiral Pipe Nailing System (스파이럴 파이프 네일링 시스템의 안정해석 및 적용성에 관한 연구)

  • Park, Si-Sam;Park, Sung-Chul;Jung, Sung-Pill;Kim, Hong-Taek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.41-49
    • /
    • 2004
  • In this study, a newly modified soil nailing technology named as the SPN (Spiral Pipe Nailing) system, is developed to self drilling method can apply to ground which is hard to keep shape of bore hole. And limit equilibrium analysis with simplified trial wedge method while length ratio and bond ratio being altered was performed to evaluate slope stability considered of tensile strength and bending stiffness. Also, using $FLAC^{2D}$ program, superiority of the SPN system was compared to the GSN (General Soil Nailing) system about an example section. And effects of various factors related to the design of the SPN system, such as the type of drilling method and the bit, are examined throughout a series of the displacement-controlled field pull-out tests. As a result, the SPN system is better than the GSN system in slope stability because of having larger bending stiffness, tensile strength and unit skin friction. And results of simplified trial wedge method are similar to results of TALREN 97 program, commercial limit equilibrium analysis computer software, about an example section. Consequently, it will find out of that the SPN system reduce displacements and settlements in down excavation process as well as to increase the global stability.

  • PDF

A preliminary study on the optimum excavation sequence of a room-and-pillar underground structure (주방식 지하구조물의 최적 굴착공정에 대한 예비 분석 연구)

  • Lee, Chulho;Choi, Soon-Wook;Hyun, Younghwan;Hwang, Jedon;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.4
    • /
    • pp.499-511
    • /
    • 2015
  • A room-and-pillar underground structure is characterized by its grid-type array of galleries. As a result, its construction and economical efficiency can be governed by excavation sequence of galleries. Therefore, this study aims to study the optimum excavation scheme of a room-and-pillar underground structure by considering its various design factors such as ground conditions and excavation sequences. Drill-and-blast method is assumed as a excavation method for a room-and-pillar underground structure. In addition, two kinds of excavation patterns corresponding to a concurrent and a sequential excavation patterns are considered in this study. For the assumed conditions, the structural stability and the construction efficiency based on the number of faces and the travel distance of a jumbo drilling machine are analyzed for the two excavation patterns. Even though the two kinds of excavation patterns show almost the same structural stability as each other, the concurrent excavation pattern is relatively preferable to the sequential excavation pattern in terms of the number of faces in operation and travel distance of a drilling jumbo.

A Case Study on Multiple-deck-charge Blasting with Electronic Detonators (전자뇌관과 다단장약을 이용한 발파 사례 연구)

  • Ko, Tae Young;Shin, Chang Oh;Lee, Hyo;Lee, Seung Cheol
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.52-58
    • /
    • 2012
  • A TBM launching shaft in DTL2 Contract 915 site is located in a typical hard Bukit Timah granite formation and lots of blasting work is required for shaft sinking. The original blast design used the electric detonator and ANFO blasts consisting of 30 holes per one blast with 1.5 m depth of drilling hole. However, significant delay of work and poor progress were expected due to the limitation of the number of blasting hole and strict vibration regulation on retaining systems. To overcome such constraints, an efficient new blasting method which can improve productivity and satisfy vibration limit was required. The revised blast design, using triple-deck blasts with electronic detonators and cartridge emulsion explosives, gives better construction performance and can reduce construction time. Such a new blasting technique can be effectively used for similar underground projects in the future where the volume of rock blasting is significant.

Tool path planning of hole-making operations in ejector plate of injection mould using modified shuffled frog leaping algorithm

  • Dalavi, Amol M.;Pawar, Padmakar J.;Singh, Tejinder Paul
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.266-273
    • /
    • 2016
  • Optimization of hole-making operations in manufacturing industry plays a vital role. Tool travel and tool switch planning are the two major issues in hole-making operations. Many industrial applications such as moulds, dies, engine block, automotive parts etc. requires machining of large number of holes. Large number of machining operations like drilling, enlargement or tapping/reaming are required to achieve the final size of individual hole, which gives rise to number of possible sequences to complete hole-making operations on the part depending upon the location of hole and tool sequence to be followed. It is necessary to find the optimal sequence of operations which minimizes the total processing cost of hole-making operations. In this work, therefore an attempt is made to reduce the total processing cost of hole-making operations by applying relatively new optimization algorithms known as shuffled frog leaping algorithm and proposed modified shuffled frog leaping algorithm for the determination of optimal sequence of hole-making operations. An industrial application example of ejector plate of injection mould is considered in this work to demonstrate the proposed approach. The obtained results by the shuffled frog leaping algorithm and proposed modified shuffled frog leaping algorithm are compared with each other. It is seen from the obtained results that the results of proposed modified shuffled frog leaping algorithm are superior to those obtained using shuffled frog leaping algorithm.

Influence of Inner-hole Priming Location on Ground Vibration (발파공내 기폭위치가 지반진동에 미치는 영향)

  • Kim, Jae-Woong;Kang, Choo-Won;Ko, Chin-Surk
    • Explosives and Blasting
    • /
    • v.30 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • In this study, the influence of priming location inside a blast hole on the ground vibration has been studied. In most of the previous studies dealing with the ground vibration, the effect of priming location in a blast hole was usually considered in a limited way. Thus, it seems that the results of the studies can be applicable only to the relevant sites. Considering the fact that the mechanism of ground vibration caused by blasting is quite complex, the priming location can have a considerable effect on the ground vibration in certain situations and be an important parameter in a blasting design. To identify the characteristics of the wave propagation according to priming locations, total 72 test blasts were carried out with different spacing, burden, drilling length, and charge, and prediction equations were derived. The characteristics of ground vibration, which was changed according to the priming location, was analyzed by using the nomogram of peak particle velocity (PPV) record. Attenuation relations, which were also dependent on the priming location, were analyzed. In this case, four different amounts of charge, that is, 0.5, 1.6, 5, and 15 kg, were used for the test. This criterion of charge amount is specified in the "Blasting design and construction guidelines to road construction" by the Ministry of Land, Transport and Maritime Affairs of Korea.