• Title/Summary/Keyword: Drill and blast

Search Result 37, Processing Time 0.022 seconds

A Study on the Effect of Irregular Drill-hole Depth on Blast Vibration (불규칙한 천공장이 발파진동 크기에 미치는 영향에 관한 연구)

  • 강추원
    • Tunnel and Underground Space
    • /
    • v.13 no.4
    • /
    • pp.316-320
    • /
    • 2003
  • This study is to evaluate an irregular drill-hole depth having an effect on the blast vibration. The relationship between a peak particle velocity and a cube root scaled distance with respect to three drill-hole depths with 2.1m, 2.3m and 2.4m are compared and analyzed using a numerical regression analysis. According to the results, the deeper a drill-hole depth is the larger a peak particle velocity is. It is suggested that a drill-hole depth is proportional to a peak particle velocity at the same scaled distance. Therefore, a regular drill-hole should be carried out in order that the blast vibration velocity of a fixed range under a allowable vibration velocity is maintained.

Development of New Drill and Blast Method with Two Different Drilling Directions for Pilot Tunnel Enlargement (터널확공시 이방향 병용천공 발파공법의 개발)

  • 배규진;문홍득
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.199-208
    • /
    • 1994
  • This paper presents an evaluation of new drill and blast method with two different drilling directions for pilot tunnel enlargement using numerical experiment and field test. To evaluate the effieiency of new tunnel enlargement method, field tests were performed and compared with conventional drill and blast method. Also, three dimensional transient dynamic analysis was made to investigate the effect of the ground vibration when blasting was performed at same position using the equivalent single hole charge.

  • PDF

Assessment of Rock Mass Properties Ahead of Tunnel Face Using Drill Performance Parameters (천공데이터를 활용한 터널 막장 전방 암반특성 평가)

  • Kim, Kwang-Yeom;Kim, Chang-Yong;Chang, Soo-Ho;Seo, Kyeong-Won;Lee, Seung-Do
    • Explosives and Blasting
    • /
    • v.25 no.1
    • /
    • pp.67-77
    • /
    • 2007
  • The drill monitoring data are useful for the detection of abrupt and unexpected changes in ground renditions. This paper introduces a new approach to how drill performance parameters can be used for the prediction of quantitative rock mass properties ahead of tunnel face and the blasting design. The drill monitoring parameters available for the predictions include the instantaneous advance speed, thrust force, torque, tool pressure and penetration rate. The assessment of the drill monitoring parameters will be able to build a database provided that in-situ drill monitoring informations are accumulated and enable us to make a reasonable blast design based on quantitative assessment of rock mass.

A preliminary study on the excavation sequence of a room-and-pillar underground structure by the drill-and-blast method (발파 굴착에 의한 주방식 지하구조물의 굴착공기 분석 연구)

  • Lee, Chulho;Hyun, Younghwan;Song, Junho;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.605-614
    • /
    • 2015
  • A room-and-pillar underground structure is characterized by its grid-type array of room and pillar. As a result, its construction and economical efficiency can be governed by excavation sequence. In this study, the construction period by the drill and blast method which can be treated as a main sequence for excavation was examined by considering the regulation for blasting and construction standard of estimation in Korea. To evaluate the construction period for the room-and-pillar underground structure constructed in 4 kinds of square-type area ($30{\times}30{\sim}57{\times}57m$), the concurrent excavation pattern which was suggested in the previous researches was used. From the suggested condition, the total construction period by drill-and-blast method can be estimated with the consideration of the construction area, number of jumbo drill and faces in operation.

Determination of the Construction Method for Young Dong Tunnel by Risk Assessment (위험도 분석기법에 의한 영동선 터널의 굴착공법 결정사례)

  • Kim, Yong-Il;Hencher, S.R.;Yoon, Young-Hoon;Cho, Sang-Kook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.1
    • /
    • pp.13-25
    • /
    • 2002
  • The construction method for Young Dong Tunnel has been chosen following detailed risk assessment. In this paper, the specific risks to the project programme, associated with adopting either mechanical excavation in the form of a shielded TBM, or drill and blast excavation methods, are assessed. From the risk assessment results, and taking other important factors into account, such as project sensitivity and local experience, the recommendation is made that the relatively low risk drill-and-blast method is the most appropriate for construction of Young Dong Tunnel.

  • PDF

Determination of the Construction Method for the Young Dong Tunnel by Risk Assessment (위험도 분석기법에 의한 영동선 터널의 굴착공법 결정사례)

  • Kim, Yong-Il;S. R. Hencher;Yoon, Young-Hoon;Cho, Sang-Kook
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.200-206
    • /
    • 2002
  • The construction method for the Young Dong Tunnel has been chosen following detailed risk assessment. In this paper, the specific risks to the project programme, associated with adopting either mechanical excavation in the form of a shielded TBM, or drill and blast excavation methods, are assessed. From the risk assessment results, and taking other important factors into account, such as project sensitivity and local experience, the recommendation is made that the relatively low risk drill-and-blast method is the most appropriate for construction of the Young Dong tunnel.

  • PDF

Application of Advanced Blast Demolition Simulation Method to the Drill and Blast Design for Demolishing Cylindrical Structures (원통형 구조물의 발파해체설계에 대한 최신 발파해체 시뮬레이션 기법의 적용)

  • Park, Hoon;Suk, Chul-Gi;Kim, Seung-Kon
    • Explosives and Blasting
    • /
    • v.26 no.1
    • /
    • pp.7-14
    • /
    • 2008
  • In order to complete successfully the demolition of a silo structure by means of felling method, structural properties and the geometric design of blast mouth have to be considered. In this study, a commercial software, 3-dimensional applied element analysis (3D AEM), was used to investigate the effect of the geometrical parameters of blast mouth on the collapse behavior of the silo structure.

Suggesting Blasting Design for Kazakhstan mine using Korea Mining Technology (국내 광산 기술을 적용한 카자흐스탄 광산 발파설계 제안)

  • Jin, Yeon-Ho;Min, Hyung-Dong;Jeong, Min-Su;Park, Yoon-Suk;Heo, Eui-Haeng;Nurmatov, Murod
    • Explosives and Blasting
    • /
    • v.32 no.1
    • /
    • pp.10-17
    • /
    • 2014
  • In this study, the information achieved from the visit to Kazakhmys mine in Kazakhstan was introduced. An optimal blasting pattern designed for the mine with the application of Korean blast technology was suggested. As a result, it was found that the blast design can reduce the consumption of explosives and the number of drill holes. The blast design can reduce the overall production cost in the mine.

Case of assembly process review and improvement for mega-diameter slurry shield TBM through the launching area (발진부지를 이용한 초대구경 이수식 쉴드TBM 조립공정 검토 및 개선 사례)

  • Park, Jinsoo;Jun, Samsu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.637-658
    • /
    • 2022
  • TBM tunnel is simple with the iterative process of excavating the ground, building a segment ring-build, and backfilling. Drill & Blast, a conventional tunnel construction method, is more complicated than the TBM tunnel and has some restrictions because it repeats the inspection, drilling, charging, blasting, ventilation, muck treatment, and installation of support materials. However, the preparation work for excavation requires time and cost based on a very detailed plan compared to Drill & Blasting, which reinforces the ground and forms a tunnel after the formation of tunnel portal. This is because the TBM equipment for excavating the target ground determines the success or failure of the construction. If the TBM, an expensive order-made equipment, is incorrectly configured at the assembly stage, it becomes difficult to excavate from the initial stage as well as the main excavation stage. When the assembled shield TBM equipment is dismantled again, and a situation of re-assembly occurs, it is difficult throughout the construction period due to economic loss as well as time. Therefore, in this study, the layout and plan of the site and the assembly process for each major part of the TBM equipment were reviewed for the assembly of slurry shield TBM to construct the largest diameter road tunnel in domestic passing through the Han River and minimized interference with other processes and the efficiency of cutter head assembly and transport were analyzed and improved to suit the site conditions.

A study on the excavation cycle by the drill-and-blast method for a room-and-pillar underground structure (주방식 지하구조물의 발파 굴착공정 분석 연구)

  • Lee, Chul-Ho;Hyun, Young-Hwan;Hwang, Je-Don;Choi, Soon-Wook;Kang, Tae-Ho;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.511-524
    • /
    • 2016
  • Since a room-and-pillar underground structure is characterized by its grid-type array of room and pillar, its economical efficiency can be governed by excavation sequence. In this study, the construction period by the drill-and-blast method as a excavation method for a room-and-pillar underground structure was examined. In addition, the parallel excavation sequence was considered as the main sequence of a room-and-pillar underground structure. Sequences of mucking and support installation were derived to estimate the total excavation cycle by taking the case of a road tunnel into consideration. From the excavation cycle of room-and-pillar underground structure, the relationship between available maximum and minimum numbers of jumbo drill machines depending on the number of faces in operation was suggested.