• 제목/요약/키워드: Drill Bit

검색결과 61건 처리시간 0.028초

CFD를 이용한 머드 탱크 2축 교반기의 회전방향에 따른 교반성능 연구 (Agitation Performance Study of 2-shafts Agitator Rotate Directio in the Mud Tank Based on CFD)

  • 임효남;이희웅;이인수;최재웅
    • 한국해양공학회지
    • /
    • 제28권2호
    • /
    • pp.111-118
    • /
    • 2014
  • In drilling process of oil wells, the drilling fluid such as mud keeps the drill bit cool and clean during drilling, with suspending drill cuttings and lubricating a drill bit. In this paper, a commercial CFD package(ANSYS Fluent 15.0) was used to solve the hydrodynamic force and evaluate mud mixing time in the mud mixing tank on offshore drilling platforms. Prediction of power consumption in co-rotating and counter-rotating models has been compared with results of Nagata's correlation equation. This research shows the hydrodynamic effect inside the two phase mud mixing tank according to rotating directions(co-rotating and counter-rotating). These results, we can conclude that the co-rotating direction of the two shafts with mixing blade in the mud mixing tank can be a preferable in power consumption and mixing time reduction.

PCB 홀 천공순서의 평가 및 NC 코드의 생성 (Evaluation of Tool Paths and NC Codes Generation for PCB Drilling Operations)

  • 최후곤;이호찬;서준성
    • 산업공학
    • /
    • 제10권1호
    • /
    • pp.223-235
    • /
    • 1997
  • The process of determining the optimal tool path in PCB(printed circuit board) drilling operations is identical with that of solving a TSP(traveling salesman problem). However, the optimal solution will be ruined when a drill bit needs tracking back in its tool paths. The back tracking occurrences shorten a life of the main spindle and result in inaccurate mechanical movements. In this study, the performances of four heuristics(Nearest Neighbor, Convex Hull, Greatest Angle and Most Eccentric Ellipse) are evaluated to obtain feasible tool paths along with less number of back trackings for a large number of holes(more than 2000holes/bit) and to generate corresponding NC codes for a given CNC drill. Also, the operations of these algorithms are visualized to show a user the graphic image of tool visitation with PCB holes on a computer screen.

  • PDF

충격햄머드릴의 기구해석 및 설계 (Modeling and Design of Impact Hammer Drill)

  • 박병규;김재환;백복현;정재천
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.146-152
    • /
    • 1997
  • This paper deals with a study of striker type impact hammer drill for improving the drilling performance. The study was performed through a numerical simulation of the impact hammer mechanism, an experimental comparison of the numerical simulation results and an optimization of the impact mechanism. The numerical model of the impact hammer drill takes into account the striker motion and the effects of the pressure in the cylinder as well as the friction acting on the striker. The equation of motion is solved with the pressure equation in the cylinder and the friction force. At the moment of impact, an ideal impact model that uses restitutiion codfficient is used to calculate the sudden change of the striker motion. The impact force numerically simulated shows a good agreement with the experimental results and thus, the validity of the numerical model is proven. Based upon the proposed model, an optimization was performed to improve the impact force of the hammer drill. The objective function is to maximize the impact force and the design variables are striker mass, frequency of piston, bit guide mass, cylindrical diameter and dimensions of the mechanism components. Each design variable and some other conditions that are essential to maintain normal operation of the hammer drill are considered as constraints. The optimized result shows remarkable improvement in impact force and an experimental proof was investigated.

  • PDF

Enhancement of Life Time for PCB (Printed Circuit Board) Drill Bit by Nitrogen Ion Implantation

  • Lee, Chan-Young;Lee, Jae-Sang;Kim, Bum-Suk
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권5호
    • /
    • pp.206-208
    • /
    • 2008
  • Implantation of metals and ceramics with ions of nitrogen and other species has improved surface properties such as friction, wear and corrosion in numerous industrial applications. In recent years, PCB drills tend to be more minimized increasingly as the electronics components have been more highly accumulated and minimized. Therefore nitrogen ion implantation was performed onto PCB drill (0.15 & 0.3 mm in diameter), in order to investigate mechanical properties of WC-Co cermets surface through Nano-indentation tests. PCB drill was implanted at energy of 70 keV, 90 keV, 120 keV and with the dose range of $1{\times}10^{17}$ and $5{\times}10^{17}\;ions/cm^{2}$. After ion implantation, WC-Co PCB drill bits was tested in actual operating situation to apply cutting tools industry and is concluded that the life time of nitrogen ion implanted PCB drills is one and a half times longer than the unimplanted.

CFD를 이용한 굴착용 천공드릴비트의 유로 최적화에 관한 연구 (Optimization of Flow Path of Drill Bit Using CFD Simulation)

  • 송창헌;권기범;박진영;신대영;조정우
    • 터널과지하공간
    • /
    • 제22권4호
    • /
    • pp.257-265
    • /
    • 2012
  • 본 연구에서는 드릴비트 내부 유로의 최적설계를 위하여 암분유동해석을 수행하였다. 이를 위해 암분과 기체의 다상유동해석이 가능한 전산유체역학 코드인 Star-CCM+을 사용하였다. 실제 천공시험으로부터 획득한 결과값을 기체 및 암분의 해석조건으로 적용하였다. 내부 유로 설계에 관련된 핵심인자를 3가지로 결정한 후, 다구찌 기법을 활용한 실험계획법으로부터 3가지 설계인자에 대한 최적값을 조사하였다.

서울 지하철공사 발파공법의 표준화 (Blasting Standardization works for NATM on the Seoul Subway Construction by Dr, Ginn Huh)

  • 허진
    • 기술사
    • /
    • 제16권3호
    • /
    • pp.5-23
    • /
    • 1983
  • On the Seoul Metropolitan Subway Construction of No. 3, 4 Line, the total length is 57 Km and it is now undergoing almost 55% progress. The working method is classified into Open Cut of 70% and the rest of 30% tunnelling method in the 48 job site. Above tunnelling method is execute by American Steel Support System and the rest of 10 job site carried out by New Austria Tunnelling Method. This paper describes Blasting Standardizations works on the above Tunnelling ' Open Cut Method under big slogan, first safety, second execution. As a superintendent, I strived standardization of works with Better powder, Better Drills ' Better Pattern. Geological structure of Seoul area is composed by Jurassic Granite and also the above rockgroup are over burden by Alluviums as a Unconformity. First of all, I carried out the standard amount of powder and burden through experimental standard blasting by each powder as following Blasting works in the subway construction is surrounding shop Building, under pass the city river and also under pass highest building basement floor. I made allowable Blasting Vibration Value by West-Germany Vornorm DIN 4150, Teil 3 and should measure each blasting works as fellows all of powder is used basically Low-Gravity and Low Velocity such as Slurry, Ammonium Nitrate ' Finex I, II. for Smooth Blasting Instead of Gelatin Dynamite. Electric Detonation Cap is used basically M/S Delay Cup instead of Electric delay ' Simultaneous cap. I applied following formula V=KW3/4 $D^{-2}$ V=Particle Velocity (Cm/sec) K=Ginh Huh's Value W=Delay Charge (Kg) D=Distance(m) In the Open Cut, within 1m distance from H-pile I made to use the Concrete breaker, as following V=7W/$^{0.5}$V/$^{-1.75}$ On the Concentrate Building area, I advise to use Light class drill ø36m Bit and advance 1.1m per round blasting the three boom jumbo drill over ø45mm used only suburb of city.e Light class drill ø36m Bit and advance 1.1m per round blasting the three boom jumbo drill over ø45mm used only suburb of city.

  • PDF

Large-scale and small-scale self-excited torsional vibrations of homogeneous and sectional drill strings

  • Gulyayev, V.I.;Glushakova, O.V.
    • Interaction and multiscale mechanics
    • /
    • 제4권4호
    • /
    • pp.291-311
    • /
    • 2011
  • To simulate the self excited torsional vibrations of rotating drill strings (DSs) in vertical bore-holes, the nonlinear wave models of homogeneous and sectional torsional pendulums are formulated. The stated problem is shown to be of singularly perturbed type because the coefficient appearing before the second derivative of the constitutive nonlinear differential equation is small. The diapasons ${\omega}_b\leq{\omega}\leq{\omega}_l$ of angular velocity ${\omega}$ of the DS rotation are found, where the torsional auto-oscillations (of limit cycles) of the DS bit are generated. The variation of the limit cycle states, i.e. birth (${\omega}={\omega}_b$), evolution (${\omega}_b<{\omega}<{\omega}_l$) and loss (${\omega}={\omega}_l$), with the increase in angular velocity ${\omega}$ is analyzed. It is observed that firstly, at birth state of bifurcation of the limit cycle, the auto-oscillation generated proceeds in the regime of fast and slow motions (multiscale motion) with very small amplitude and it has a relaxation mode with nearly discontinuous angular velocities of elastic twisting. The vibration amplitude increases as ${\omega}$ increases, and then it decreases as ${\omega}$ approaches ${\omega}_l$. Sectional drill strings are also considered, and the conditions of the solution at the point of the upper and lower section joints are deduced. Besides, the peculiarities of the auto-oscillations of the sectional DSs are discussed.

시추용 머드혼합탱크의 비뉴턴 유체 모델에 대한 교반성능의 수치해석적 연구 (Numerical Study of Agitation Performance in a Drilling Mud Mixing Tank to Non-Newtonian Rheological Properties)

  • 임효남;이희웅;이인수;최재웅
    • 한국유체기계학회 논문집
    • /
    • 제17권6호
    • /
    • pp.29-37
    • /
    • 2014
  • Non-Newtonian fluid mechanics takes charge of an important role in the oil industries. Especially in the oil well drilling process, the drilling fluid such as mud keeps the drill bit cool and clean during drilling, with suspending drill cuttings and lubricating a drill bit. The purpose of this study is to examine the effect of fluid mud rheological properties to predict different characteristics of non-Newtonian fluid in the mud mixing tank on offshore drilling platforms. In this paper, ANSYS fluent package was used for the simulation to solve the hydrodynamic force and to evaluate mud mixing time. Prediction of the power consumption and the pumping effectiveness has been presented with different operating fluid models as Newtonian and non-Newtonian fluid. The comparison between Newtonain mud model and non-Newtonian mud model is confirmed by the CFD simulation method of drilling mud mixing tank. The results present useful information for the design of the drilling mud mixing tanks and provide some guidance on the use of CFD tool for such non-Newtonian fluid flow.

Enhancement of Wear Resistance of CoCrNiAlTi Plasma Sprayed Coatings Using Titanium Carbide

  • De-Yong Li;Chul-Hee Lee
    • Tribology and Lubricants
    • /
    • 제39권1호
    • /
    • pp.13-20
    • /
    • 2023
  • Large drill bits may face high hardness ore and high working pressure when working. To optimize the use effect of large drill bits and prolong the use time, it is necessary to add a layer of pressure-resistant, wear-resistant, and low-friction coating on the surface of the drill bit. In this study, CoCrNiAlTi high-entropy alloy coatings and CoCrNiAlTi (70 wt%)-TiC (30 wt%) composite coatings are successfully prepared on Q235 steel by plasma spraying. The CoCrNiAlTi (70 wt%)-TiC (30 wt%) coating consists of FCC solid solution and a small amount of TiC phase. The effect of TiC on the composition phase, microhardness, and elastic modulus of HEA coating is studied by X-ray diffractometer (XRD) and microhardness tester. The effect of TiC on the friction and wear properties of HEA coatings is investigated using a wear tester. By improving the process parameters, the metallurgical bonding between the coating and the substrate is well combined, and a coating without pores and cracks is obtained. The experimental results confirm that the microhardness, elastic modulus, and wear resistance of CoCrNiAlTi-TiC composite coating are better, and the friction coefficient is lower.

유전자알고리즘을 활용한 최적화된 라운드트립 발생 예측 시스템 개발 (Development of an Optimized Prediction System of Round Trip Occurrence using Genetic Algorithm)

  • 이승수;서종원;김광염;신휴성
    • 터널과지하공간
    • /
    • 제25권6호
    • /
    • pp.534-542
    • /
    • 2015
  • 대심도 시추공사는 시추비트의 마모로 인해 발생하는 라운드트립(round trip)이 이산적으로 발생된다. 라운드트립은 심도가 깊어질수록 교체에 소요되는 시간이 증가하여 공사 성능에 많은 영향을 끼친다. 따라서 시추 프로젝트의 타당성분석 및 관리 효율화를 위해서는 라운드트립의 신뢰적인 예측기술이 확보되어야 한다. 이승수 등(2013)은 TOSA(round trip occurrence simulation algorithm)을 제시하여 비트의 마모단계별 라운드트립이 발생되는 깊이와 시점을 분석할 수 있는 알고리즘을 제시하였다. 그러나 시뮬레이션 구간의 수가 증가할수록 시뮬레이션 횟수가 기하급수적으로 증가하여 연산시간이 오래 걸린다는 단점을 가지고 있다. 본 연구에서는 유전자 알고리즘을 활용하여 단 시간에 TOSA를 통한 최적화된 라운드트립의 발생을 예측할 수 있는 모듈을 개발하고 검증한 내용에 대하여 소개한다.